Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 310(5): L452-64, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26637632

RESUMO

Alveolar epithelial and endothelial cell injury is a major feature of the acute respiratory distress syndrome, in particular when in conjunction with ventilation therapies. Previously we showed [Kim SC, Kellett T, Wang S, Nishi M, Nagre N, Zhou B, Flodby P, Shilo K, Ghadiali SN, Takeshima H, Hubmayr RD, Zhao X. Am J Physiol Lung Cell Mol Physiol 307: L449-L459, 2014.] that tripartite motif protein 72 (TRIM72) is essential for amending alveolar epithelial cell injury. Here, we posit that TRIM72 improves cellular integrity through its interaction with caveolin 1 (Cav1). Our data show that, in primary type I alveolar epithelial cells, lack of TRIM72 led to significant reduction of Cav1 at the plasma membrane, accompanied by marked attenuation of caveolar endocytosis. Meanwhile, lentivirus-mediated overexpression of TRIM72 selectively increases caveolar endocytosis in rat lung epithelial cells, suggesting a functional association between these two. Further coimmunoprecipitation assays show that deletion of either functional domain of TRIM72, i.e., RING, B-box, coiled-coil, or PRY-SPRY, abolishes the physical interaction between TRIM72 and Cav1, suggesting that all theoretical domains of TRIM72 are required to forge a strong interaction between these two molecules. Moreover, in vivo studies showed that injurious ventilation-induced lung cell death was significantly increased in knockout (KO) TRIM72(KO) and Cav1(KO) lungs compared with wild-type controls and was particularly pronounced in double KO mutants. Apoptosis was accompanied by accentuation of gross lung injury manifestations in the TRIM72(KO) and Cav1(KO) mice. Our data show that TRIM72 directly and indirectly modulates caveolar endocytosis, an essential process involved in repair of lung epithelial cells through removal of plasma membrane wounds. Given TRIM72's role in endomembrane trafficking and cell repair, we consider this molecule an attractive therapeutic target for patients with injured lungs.


Assuntos
Proteínas de Transporte/metabolismo , Cavéolas/metabolismo , Endocitose/fisiologia , Células Endoteliais/metabolismo , Pulmão/metabolismo , Animais , Apoptose/fisiologia , Morte Celular/fisiologia , Membrana Celular/metabolismo , Movimento Celular/fisiologia , Células Epiteliais/metabolismo , Pulmão/citologia , Proteínas de Membrana , Camundongos
2.
Am J Physiol Lung Cell Mol Physiol ; 307(6): L449-59, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25106429

RESUMO

The molecular mechanisms for lung cell repair are largely unknown. Previous studies identified tripartite motif protein 72 (TRIM72) from striated muscle and linked its function to tissue repair. In this study, we characterized TRIM72 expression in lung tissues and investigated the role of TRIM72 in repair of alveolar epithelial cells. In vivo injury of lung cells was introduced by high tidal volume ventilation, and repair-defective cells were labeled with postinjury administration of propidium iodide. Primary alveolar epithelial cells were isolated and membrane wounding and repair were labeled separately. Our results show that absence of TRIM72 increases susceptibility to deformation-induced lung injury whereas TRIM72 overexpression is protective. In vitro cell wounding assay revealed that TRIM72 protects alveolar epithelial cells through promoting repair rather than increasing resistance to injury. The repair function of TRIM72 in lung cells is further linked to caveolin 1. These data suggest an essential role for TRIM72 in repair of alveolar epithelial cells under plasma membrane stress failure.


Assuntos
Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Membrana Celular/patologia , Células Epiteliais , Alvéolos Pulmonares , Cicatrização , Animais , Proteínas de Transporte/genética , Caveolina 1/genética , Caveolina 1/metabolismo , Membrana Celular/genética , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Proteínas de Membrana , Camundongos , Camundongos Knockout , Alvéolos Pulmonares/lesões , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA