Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Science ; 342(6160): 1240585, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24200810

RESUMO

The last step in eukaryotic translational initiation involves the joining of the large and small subunits of the ribosome, with initiator transfer RNA (Met-tRNA(i)(Met)) positioned over the start codon of messenger RNA in the P site. This step is catalyzed by initiation factor eIF5B. We used recent advances in cryo-electron microscopy (cryo-EM) to determine a structure of the eIF5B initiation complex to 6.6 angstrom resolution from <3% of the population, comprising just 5143 particles. The structure reveals conformational changes in eIF5B, initiator tRNA, and the ribosome that provide insights into the role of eIF5B in translational initiation. The relatively high resolution obtained from such a small fraction of a heterogeneous sample suggests a general approach for characterizing the structure of other dynamic or transient biological complexes.


Assuntos
Fatores de Iniciação em Eucariotos/química , Iniciação Traducional da Cadeia Peptídica , Ribossomos/química , Métodos Analíticos de Preparação de Amostras , Microscopia Crioeletrônica/métodos , Humanos , Conformação Proteica , RNA de Transferência de Metionina/química , Saccharomyces cerevisiae
2.
Nature ; 500(7460): 107-10, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23812587

RESUMO

During normal translation, the binding of a release factor to one of the three stop codons (UGA, UAA or UAG) results in the termination of protein synthesis. However, modification of the initial uridine to a pseudouridine (Ψ) allows efficient recognition and read-through of these stop codons by a transfer RNA (tRNA), although it requires the formation of two normally forbidden purine-purine base pairs. Here we determined the crystal structure at 3.1 Å resolution of the 30S ribosomal subunit in complex with the anticodon stem loop of tRNA(Ser) bound to the ΨAG stop codon in the A site. The ΨA base pair at the first position is accompanied by the formation of purine-purine base pairs at the second and third positions of the codon, which show an unusual Watson-Crick/Hoogsteen geometry. The structure shows a previously unsuspected ability of the ribosomal decoding centre to accommodate non-canonical base pairs.


Assuntos
Pareamento de Bases , Códon de Terminação/genética , Códon de Terminação/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Anticódon/química , Anticódon/genética , Anticódon/metabolismo , Sequência de Bases , Códon de Terminação/química , Cristalografia por Raios X , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica , Pseudouridina/química , Pseudouridina/genética , Pseudouridina/metabolismo , RNA de Transferência de Serina/química , RNA de Transferência de Serina/genética , RNA de Transferência de Serina/metabolismo , Subunidades Ribossômicas Menores de Bactérias/química , Subunidades Ribossômicas Menores de Bactérias/genética , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Ribossomos/genética
3.
Science ; 340(6140): 1235490, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23812720

RESUMO

A key step of translation by the ribosome is translocation, which involves the movement of messenger RNA (mRNA) and transfer RNA (tRNA) with respect to the ribosome. This allows a new round of protein chain elongation by placing the next mRNA codon in the A site of the 30S subunit. Translocation proceeds through an intermediate state in which the acceptor ends of the tRNAs have moved with respect to the 50S subunit but not the 30S subunit, to form hybrid states. The guanosine triphosphatase (GTPase) elongation factor G (EF-G) catalyzes the subsequent movement of mRNA and tRNA with respect to the 30S subunit. Here, we present a crystal structure at 3 angstrom resolution of the Thermus thermophilus ribosome with a tRNA in the hybrid P/E state bound to EF-G with a GTP analog. The structure provides insights into structural changes that facilitate translocation and suggests a common GTPase mechanism for EF-G and elongation factor Tu.


Assuntos
Fator G para Elongação de Peptídeos/química , Biossíntese de Proteínas , Ribossomos/química , Thermus thermophilus/enzimologia , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Guanosina Trifosfato/análogos & derivados , Dados de Sequência Molecular , Estrutura Terciária de Proteína , RNA Mensageiro/química , RNA de Transferência/química
4.
EMBO Rep ; 14(9): 811-6, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23877429

RESUMO

The bacterial stringent response links nutrient starvation with the transcriptional control of genes. This process is initiated by the stringent factor RelA, which senses the presence of deacylated tRNA in the ribosome as a symptom of amino-acid starvation to synthesize the alarmone (p)ppGpp. Here we report a cryo-EM study of RelA bound to ribosomes bearing cognate, deacylated tRNA in the A-site. The data show that RelA on the ribosome stabilizes an unusual distorted form of the tRNA, with the acceptor arm making contact with RelA and far from its normal location in the peptidyl transferase centre.


Assuntos
Proteínas de Escherichia coli/química , RNA de Transferência/química , Ribossomos/metabolismo , Fator de Transcrição RelA/química , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , RNA de Transferência/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Fator de Transcrição RelA/metabolismo
5.
J Mol Biol ; 425(20): 3907-10, 2013 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23702293

RESUMO

Biosynthetically and chemically derived analogs of the antibiotic pactamycin and de-6-methylsalicylyl (MSA)-pactamycin have attracted recent interest as potential antiprotozoal and antitumor drugs. Here, we report a 3.1-Å crystal structure of de-6-MSA-pactamycin bound to its target site on the Thermus thermophilus 30S ribosomal subunit. Although de-6-MSA-pactamycin lacks the MSA moiety, it shares the same binding site as pactamycin and induces a displacement of nucleic acid template bound at the E-site of the 30S. The structure highlights unique interactions between this pactamycin analog and the ribosome, which paves the way for therapeutic development of related compounds.


Assuntos
Pactamicina/química , Pactamicina/metabolismo , Subunidades Ribossômicas Menores de Bactérias/química , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Conformação Molecular , Pactamicina/análogos & derivados , Ligação Proteica , RNA Ribossômico 16S/química , RNA Ribossômico 16S/metabolismo , Thermus thermophilus/metabolismo
6.
Science ; 335(6074): 1366-9, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22422985

RESUMO

In bacteria, ribosomes stalled at the end of truncated messages are rescued by transfer-messenger RNA (tmRNA), a bifunctional molecule that acts as both a transfer RNA (tRNA) and a messenger RNA (mRNA), and SmpB, a small protein that works in concert with tmRNA. Here, we present the crystal structure of a tmRNA fragment, SmpB and elongation factor Tu bound to the ribosome at 3.2 angstroms resolution. The structure shows how SmpB plays the role of both the anticodon loop of tRNA and portions of mRNA to facilitate decoding in the absence of an mRNA codon in the A site of the ribosome and explains why the tmRNA-SmpB system does not interfere with normal translation.


Assuntos
Fator Tu de Elongação de Peptídeos/química , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Thermus thermophilus/química , Anticódon , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência de Bases , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Fator Tu de Elongação de Peptídeos/metabolismo , Biossíntese de Proteínas , Conformação Proteica , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Subunidades Ribossômicas Menores de Bactérias/química , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Subunidades Ribossômicas Menores de Bactérias/ultraestrutura , Ribossomos/ultraestrutura , Thermus thermophilus/genética , Thermus thermophilus/metabolismo , Thermus thermophilus/ultraestrutura
7.
Proc Natl Acad Sci U S A ; 108(38): 15798-803, 2011 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-21903932

RESUMO

Protein release factor 3 (RF3), a guanosine triphosphatase, binds to ribosome after release of the nascent peptide and promotes dissociation of the class I release factors during the termination of protein synthesis. Here we present the crystal structure of the 70S ribosome with RF3 in the presence of a nonhydrolyzable GTP analogue, guanosine 5'-ß,γ-methylenetriphosphate (GDPCP), refined to 3.8 Å resolution. The structure shows that the subunits of the ribosome are rotated relative to each other compared to the canonical state, resulting in a P/E hybrid state for the transfer RNA. The substantial conformational rearrangements in the complex are described and suggest how RF3, by stabilizing the hybrid state of the ribosome, facilitates the dissociation of class I release factors.


Assuntos
Proteínas de Escherichia coli/química , GTP Fosfo-Hidrolases/química , Fatores de Terminação de Peptídeos/química , Ribossomos/química , Sequência de Bases , Cristalização , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Estrutura Terciária de Proteína , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Ribossomos/metabolismo
8.
Nat Struct Mol Biol ; 18(4): 432-6, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21378964

RESUMO

The ribosome converts genetic information into protein by selecting aminoacyl tRNAs whose anticodons base-pair to an mRNA codon. Mutations in the tRNA body can perturb this process and affect fidelity. The Hirsh suppressor is a well-studied tRNA(Trp) harboring a G24A mutation that allows readthrough of UGA stop codons. Here we present crystal structures of the 70S ribosome complexed with EF-Tu and aminoacyl tRNA (native tRNA(Trp), G24A tRNA(Trp) or the miscoding A9C tRNA(Trp)) bound to cognate UGG or near-cognate UGA codons, determined at 3.2-Å resolution. The A9C and G24A mutations lead to miscoding by facilitating the distortion of tRNA required for decoding. A9C accomplishes this by increasing tRNA flexibility, whereas G24A allows the formation of an additional hydrogen bond that stabilizes the distortion. Our results also suggest that each native tRNA will adopt a unique conformation when delivered to the ribosome that allows accurate decoding.


Assuntos
Anticódon , Mutação , RNA de Transferência/genética , Sequência de Bases , Códon , Cristalografia por Raios X , Modelos Moleculares , Conformação de Ácido Nucleico , RNA de Transferência/química
9.
Science ; 330(6005): 835-838, 2010 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-21051640

RESUMO

Protein synthesis requires several guanosine triphosphatase (GTPase) factors, including elongation factor Tu (EF-Tu), which delivers aminoacyl-transfer RNAs (tRNAs) to the ribosome. To understand how the ribosome triggers GTP hydrolysis in translational GTPases, we have determined the crystal structure of EF-Tu and aminoacyl-tRNA bound to the ribosome with a GTP analog, to 3.2 angstrom resolution. EF-Tu is in its active conformation, the switch I loop is ordered, and the catalytic histidine is coordinating the nucleophilic water in position for inline attack on the γ-phosphate of GTP. This activated conformation is due to a critical and conserved interaction of the histidine with A2662 of the sarcin-ricin loop of the 23S ribosomal RNA. The structure suggests a universal mechanism for GTPase activation and hydrolysis in translational GTPases on the ribosome.


Assuntos
Guanosina Trifosfato/metabolismo , Fator Tu de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/metabolismo , RNA Bacteriano/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Ribossomos/metabolismo , Thermus thermophilus/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Ativação Enzimática , Guanosina Trifosfato/análogos & derivados , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Conformação de Ácido Nucleico , Paromomicina/metabolismo , Fosfatos/metabolismo , Estrutura Terciária de Proteína , RNA Bacteriano/química , RNA Ribossômico 23S/química , RNA Ribossômico 23S/metabolismo , Aminoacil-RNA de Transferência/química , Thermus thermophilus/química , Thermus thermophilus/ultraestrutura
10.
RNA ; 16(12): 2319-24, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20962038

RESUMO

All organisms incorporate post-transcriptional modifications into ribosomal RNA, influencing ribosome assembly and function in ways that are poorly understood. The most highly conserved modification is the dimethylation of two adenosines near the 3' end of the small subunit rRNA. Lack of these methylations due to deficiency in the KsgA methyltransferase stimulates translational errors during both the initiation and elongation phases of protein synthesis and confers resistance to the antibiotic kasugamycin. Here, we present the X-ray crystal structure of the Thermus thermophilus 30S ribosomal subunit lacking these dimethylations. Our data indicate that the KsgA-directed methylations facilitate structural rearrangements in order to establish a functionally optimum subunit conformation during the final stages of ribosome assembly.


Assuntos
Metiltransferases/metabolismo , RNA Ribossômico 16S/metabolismo , Subunidades Ribossômicas Menores de Bactérias/química , Ribossomos/fisiologia , Sequência de Bases , Cristalografia por Raios X , Metilação , Metiltransferases/genética , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformação de Ácido Nucleico , Conformação Proteica , RNA Ribossômico 16S/química , RNA Ribossômico 16S/fisiologia , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Subunidades Ribossômicas Menores de Bactérias/fisiologia , Ribossomos/química , Ribossomos/metabolismo , Relação Estrutura-Atividade , Thermus thermophilus/química , Thermus thermophilus/metabolismo , Thermus thermophilus/fisiologia
11.
Nat Struct Mol Biol ; 17(10): 1241-1246, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20852642

RESUMO

The toxin colicin E3 targets the 30S subunit of bacterial ribosomes and cleaves a phosphodiester bond in the decoding center. We present the crystal structure of the 70S ribosome in complex with the cytotoxic domain of colicin E3 (E3-rRNase). The structure reveals how the rRNase domain of colicin binds to the A site of the decoding center in the 70S ribosome and cleaves the 16S ribosomal RNA (rRNA) between A1493 and G1494. The cleavage mechanism involves the concerted action of conserved residues Glu62 and His58 of the cytotoxic domain of colicin E3. These residues activate the 16S rRNA for 2' OH-induced hydrolysis. Conformational changes observed for E3-rRNase, 16S rRNA and helix 69 of 23S rRNA suggest that a dynamic binding platform is required for colicin E3 binding and function.


Assuntos
Colicinas/química , Escherichia coli/metabolismo , RNA Ribossômico 16S/química , Sequência de Aminoácidos , Catálise , Colicinas/metabolismo , Sequência Conservada , Cristalografia por Raios X , Substâncias Macromoleculares , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Conformação Proteica , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , RNA Ribossômico 16S/metabolismo , RNA Ribossômico 23S/química , RNA Ribossômico 23S/metabolismo , RNA de Transferência de Metionina/metabolismo , Ribossomos/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Thermus thermophilus/metabolismo
12.
Proc Natl Acad Sci U S A ; 107(19): 8593-8, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-20421507

RESUMO

We report the crystal structure of release factor 2 bound to ribosome with an aminoacyl tRNA substrate analog at the ribosomal P site, at 3.1 A resolution. The structure shows that upon stop-codon recognition, the universally conserved GGQ motif packs tightly into the peptidyl transferase center. Nucleotide A2602 of 23S rRNA, implicated in peptide release, packs with the GGQ motif in release factor 2. The ribose of A76 of the peptidyl-tRNA adopts the C2'-endo conformation, and the 2' hydroxyl of A76 is within hydrogen-bond distance of the 2' hydroxyl of A2451. The structure suggests how a catalytic water can be coordinated in the peptidyl transferase center and, together with previous biochemical and computational data, suggests a model for how the ester bond between the peptidyl tRNA and the nascent peptide is hydrolyzed.


Assuntos
Biocatálise , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/metabolismo , Peptídeos/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Thermus thermophilus/metabolismo , Motivos de Aminoácidos , Glutamina/metabolismo , Radical Hidroxila/metabolismo , Modelos Biológicos , Modelos Moleculares , Nucleotídeos/metabolismo , Terminação Traducional da Cadeia Peptídica , Peptidil Transferases/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Especificidade por Substrato , Água/metabolismo
13.
Cell ; 139(6): 1084-95, 2009 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-20005802

RESUMO

Translational control is widely used to adjust gene expression levels. During the stringent response in bacteria, mRNA is degraded on the ribosome by the ribosome-dependent endonuclease, RelE. The molecular basis for recognition of the ribosome and mRNA by RelE and the mechanism of cleavage are unknown. Here, we present crystal structures of E. coli RelE in isolation (2.5 A) and bound to programmed Thermus thermophilus 70S ribosomes before (3.3 A) and after (3.6 A) cleavage. RelE occupies the A site and causes cleavage of mRNA after the second nucleotide of the codon by reorienting and activating the mRNA for 2'-OH-induced hydrolysis. Stacking of A site codon bases with conserved residues in RelE and 16S rRNA explains the requirement for the ribosome in catalysis and the subtle sequence specificity of the reaction. These structures provide detailed insight into the translational regulation on the bacterial ribosome by mRNA cleavage.


Assuntos
Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Escherichia coli/metabolismo , Modelos Moleculares , RNA Ribossômico 16S/metabolismo , Ribossomos/química , Thermus thermophilus/metabolismo
14.
Science ; 326(5953): 694-9, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19833919

RESUMO

Elongation factor G (EF-G) is a guanosine triphosphatase (GTPase) that plays a crucial role in the translocation of transfer RNAs (tRNAs) and messenger RNA (mRNA) during translation by the ribosome. We report a crystal structure refined to 3.6 angstrom resolution of the ribosome trapped with EF-G in the posttranslocational state using the antibiotic fusidic acid. Fusidic acid traps EF-G in a conformation intermediate between the guanosine triphosphate and guanosine diphosphate forms. The interaction of EF-G with ribosomal elements implicated in stimulating catalysis, such as the L10-L12 stalk and the L11 region, and of domain IV of EF-G with the tRNA at the peptidyl-tRNA binding site (P site) and with mRNA shed light on the role of these elements in EF-G function. The stabilization of the mobile stalks of the ribosome also results in a more complete description of its structure.


Assuntos
Fator G para Elongação de Peptídeos/química , Ribossomos/química , Proteínas de Bactérias/química , Catálise , Cristalografia por Raios X , Ácido Fusídico/química , Ácido Fusídico/farmacologia , Modelos Moleculares , Biossíntese de Proteínas , Conformação Proteica , Estrutura Terciária de Proteína , Inibidores da Síntese de Proteínas/química , Inibidores da Síntese de Proteínas/farmacologia , RNA Bacteriano/química , RNA Mensageiro/química , RNA de Transferência/química , Thermus thermophilus
15.
Science ; 326(5953): 688-694, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19833920

RESUMO

The ribosome selects a correct transfer RNA (tRNA) for each amino acid added to the polypeptide chain, as directed by messenger RNA. Aminoacyl-tRNA is delivered to the ribosome by elongation factor Tu (EF-Tu), which hydrolyzes guanosine triphosphate (GTP) and releases tRNA in response to codon recognition. The signaling pathway that leads to GTP hydrolysis upon codon recognition is critical to accurate decoding. Here we present the crystal structure of the ribosome complexed with EF-Tu and aminoacyl-tRNA, refined to 3.6 angstrom resolution. The structure reveals details of the tRNA distortion that allows aminoacyl-tRNA to interact simultaneously with the decoding center of the 30S subunit and EF-Tu at the factor binding site. A series of conformational changes in EF-Tu and aminoacyl-tRNA suggests a communication pathway between the decoding center and the guanosine triphosphatase center of EF-Tu.


Assuntos
Fator Tu de Elongação de Peptídeos/química , RNA Bacteriano/química , Aminoacil-RNA de Transferência/química , Ribossomos/química , Cristalografia por Raios X , Ativação Enzimática , GTP Fosfo-Hidrolases/metabolismo , Código Genético , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , RNA de Transferência de Fenilalanina/química , RNA de Transferência de Treonina/química , Thermus thermophilus
16.
Nat Struct Mol Biol ; 16(5): 528-33, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19363482

RESUMO

Protein synthesis is catalyzed in the peptidyl transferase center (PTC), located in the large (50S) subunit of the ribosome. No high-resolution structure of the intact ribosome has contained a complete active site including both A- and P-site tRNAs. In addition, although past structures of the 50S subunit have found no ordered proteins at the PTC, biochemical evidence suggests that specific proteins are capable of interacting with the 3' ends of tRNA ligands. Here we present structures, at 3.6-A and 3.5-A resolution respectively, of the 70S ribosome in complex with A- and P-site tRNAs that mimic pre- and post-peptidyl-transfer states. These structures demonstrate that the PTC is very similar between the 50S subunit and the intact ribosome. They also reveal interactions between the ribosomal proteins L16 and L27 and the tRNA substrates, helping to elucidate the role of these proteins in peptidyl transfer.


Assuntos
Peptidil Transferases/metabolismo , Ribossomos/enzimologia , Thermus thermophilus/metabolismo , Cristalografia por Raios X , Escherichia coli , Ligação Proteica , Estrutura Secundária de Proteína , RNA Ribossômico 23S/química , RNA Ribossômico 23S/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Eletricidade Estática , Especificidade por Substrato
17.
EMBO J ; 28(6): 755-65, 2009 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-19229291

RESUMO

We have used single-particle reconstruction in cryo-electron microscopy to determine a structure of the Thermus thermophilus ribosome in which the ternary complex of elongation factor Tu (EF-Tu), tRNA and guanine nucleotide has been trapped on the ribosome using the antibiotic kirromycin. This represents the state in the decoding process just after codon recognition by tRNA and the resulting GTP hydrolysis by EF-Tu, but before the release of EF-Tu from the ribosome. Progress in sample purification and image processing made it possible to reach a resolution of 6.4 A. Secondary structure elements in tRNA, EF-Tu and the ribosome, and even GDP and kirromycin, could all be visualized directly. The structure reveals a complex conformational rearrangement of the tRNA in the A/T state and the interactions with the functionally important switch regions of EF-Tu crucial to GTP hydrolysis. Thus, the structure provides insights into the molecular mechanism of signalling codon recognition from the decoding centre of the 30S subunit to the GTPase centre of EF-Tu.


Assuntos
Fator Tu de Elongação de Peptídeos/metabolismo , Ribossomos/enzimologia , Thermus thermophilus/enzimologia , Microscopia Crioeletrônica , Ativação Enzimática , Guanosina Difosfato/química , Modelos Moleculares , Fator Tu de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/ultraestrutura , Estrutura Secundária de Proteína , Piridonas/química , RNA de Transferência/química , RNA de Transferência/ultraestrutura , Ribossomos/química , Ribossomos/ultraestrutura , Eletricidade Estática
18.
Science ; 322(5903): 953-6, 2008 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-18988853

RESUMO

The termination of protein synthesis occurs through the specific recognition of a stop codon in the A site of the ribosome by a release factor (RF), which then catalyzes the hydrolysis of the nascent protein chain from the P-site transfer RNA. Here we present, at a resolution of 3.5 angstroms, the crystal structure of RF2 in complex with its cognate UGA stop codon in the 70S ribosome. The structure provides insight into how RF2 specifically recognizes the stop codon; it also suggests a model for the role of a universally conserved GGQ motif in the catalysis of peptide release.


Assuntos
Códon de Terminação , Terminação Traducional da Cadeia Peptídica , Fatores de Terminação de Peptídeos/química , Ribossomos/metabolismo , Thermus thermophilus/química , Motivos de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biocatálise , Códon de Terminação/química , Códon de Terminação/metabolismo , Cristalografia por Raios X , Ligação de Hidrogênio , Modelos Moleculares , Fatores de Terminação de Peptídeos/metabolismo , Peptídeos/metabolismo , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA Bacteriano/metabolismo , RNA de Transferência/metabolismo , Subunidades Ribossômicas/química , Subunidades Ribossômicas/metabolismo , Ribossomos/química
19.
Nat Struct Mol Biol ; 14(8): 733-7, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17660830

RESUMO

In bacteria, disassembly of the ribosome at the end of translation is facilitated by an essential protein factor termed ribosome recycling factor (RRF), which works in concert with elongation factor G. Here we describe the crystal structure of the Thermus thermophilus RRF bound to a 70S ribosomal complex containing a stop codon in the A site, a transfer RNA anticodon stem-loop in the P site and tRNA(fMet) in the E site. The work demonstrates that structures of translation factors bound to 70S ribosomes can be determined at reasonably high resolution. Contrary to earlier reports, we did not observe any RRF-induced changes in bridges connecting the two subunits. This suggests that such changes are not a direct requirement for or consequence of RRF binding but possibly arise from the subsequent stabilization of a hybrid state of the ribosome.


Assuntos
Modelos Moleculares , Proteínas Ribossômicas/química , Ribossomos/química , Thermus thermophilus , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Ligantes , Dados de Sequência Molecular , Estrutura Terciária de Proteína , RNA Bacteriano/química
20.
RNA ; 13(6): 817-23, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17416634

RESUMO

During translation, some +1 frameshift mRNA sites are decoded by frameshift suppressor tRNAs that contain an extra base in their anticodon loops. Similarly engineered tRNAs have been used to insert nonnatural amino acids into proteins. Here, we report crystal structures of two anticodon stem-loops (ASLs) from tRNAs known to facilitate +1 frameshifting bound to the 30S ribosomal subunit with their cognate mRNAs. ASL(CCCG) and ASL(ACCC) (5'-3' nomenclature) form unpredicted anticodon-codon interactions where the anticodon base 34 at the wobble position contacts either the fourth codon base or the third and fourth codon bases. In addition, we report the structure of ASL(ACGA) bound to the 30S ribosomal subunit with its cognate mRNA. The tRNA containing this ASL was previously shown to be unable to facilitate +1 frameshifting in competition with normal tRNAs (Hohsaka et al. 2001), and interestingly, it displays a normal anticodon-codon interaction. These structures show that the expanded anticodon loop of +1 frameshift promoting tRNAs are flexible enough to adopt conformations that allow three bases of the anticodon to span four bases of the mRNA. Therefore it appears that normal triplet pairing is not an absolute constraint of the decoding center.


Assuntos
Anticódon/química , Anticódon/genética , RNA Bacteriano/química , RNA Bacteriano/genética , RNA de Transferência/química , RNA de Transferência/genética , Anticódon/metabolismo , Sequência de Bases , Cristalografia por Raios X , Mudança da Fase de Leitura do Gene Ribossômico , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Bacteriano/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Ribossomos/química , Ribossomos/genética , Ribossomos/metabolismo , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA