Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(24): e2220867120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37279265

RESUMO

The mammalian cochlear epithelium undergoes substantial remodeling and maturation before the onset of hearing. However, very little is known about the transcriptional network governing cochlear late-stage maturation and particularly the differentiation of its lateral nonsensory region. Here, we establish ZBTB20 as an essential transcription factor required for cochlear terminal differentiation and maturation and hearing. ZBTB20 is abundantly expressed in the developing and mature cochlear nonsensory epithelial cells, with transient expression in immature hair cells and spiral ganglion neurons. Otocyst-specific deletion of Zbtb20 causes profound deafness with reduced endolymph potential in mice. The subtypes of cochlear epithelial cells are normally generated, but their postnatal development is arrested in the absence of ZBTB20, as manifested by an immature appearance of the organ of Corti, malformation of tectorial membrane (TM), a flattened spiral prominence (SP), and a lack of identifiable Boettcher cells. Furthermore, these defects are related with a failure in the terminal differentiation of the nonsensory epithelium covering the outer border Claudius cells, outer sulcus root cells, and SP epithelial cells. Transcriptome analysis shows that ZBTB20 regulates genes encoding for TM proteins in the greater epithelial ridge, and those preferentially expressed in root cells and SP epithelium. Our results point to ZBTB20 as an essential regulator for postnatal cochlear maturation and particularly for the terminal differentiation of cochlear lateral nonsensory domain.


Assuntos
Cóclea , Células Ciliadas Auditivas , Animais , Camundongos , Cóclea/metabolismo , Células Ciliadas Auditivas/fisiologia , Audição/fisiologia , Mamíferos , Gânglio Espiral da Cóclea , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
J Neurosci ; 43(29): 5305-5318, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37369584

RESUMO

One of the most striking aspects of the sensory epithelium of the mammalian cochlea, the organ of Corti (OC), is the presence of precise boundaries between sensory and nonsensory cells at its medial and lateral edges. A particular example of this precision is the single row of inner hair cells (IHCs) and associated supporting cells along the medial (neural) boundary. Despite the regularity of this boundary, the developmental processes and genetic factors that contribute to its specification are poorly understood. In this study we demonstrate that Leucine Rich Repeat Neuronal 1 (Lrrn1), which codes for a single-pass, transmembrane protein, is expressed before the development of the mouse organ of Corti in the row of cells that will form its medial border. Deletion of Lrrn1 in mice of mixed sex leads to disruptions in boundary formation that manifest as ectopic inner hair cells and supporting cells. Genetic and pharmacological manipulations demonstrate that Lrrn1 interacts with the Notch signaling pathway and strongly suggest that Lrrn1 normally acts to enhance Notch signaling across the medial boundary. This interaction is required to promote formation of the row of inner hair cells and suppress the conversion of adjacent nonsensory cells into hair cells and supporting cells. These results identify Lrrn1 as an important regulator of boundary formation and cellular patterning during development of the organ of Corti.SIGNIFICANCE STATEMENT Patterning of the developing mammalian cochlea into distinct sensory and nonsensory regions and the specification of multiple different cell fates within those regions are critical for proper auditory function. Here, we report that the transmembrane protein Leucine Rich Repeat Neuronal 1 (LRRN1) is expressed along the sharp medial boundary between the single row of mechanosensory inner hair cells (IHCs) and adjacent nonsensory cells. Formation of this boundary is mediated in part by Notch signaling, and loss of Lrrn1 leads to disruptions in boundary formation similar to those caused by a reduction in Notch activity, suggesting that LRRN1 likely acts to enhance Notch signaling. Greater understanding of sensory/nonsensory cell fate decisions in the cochlea will help inform the development of regenerative strategies aimed at restoring auditory function.


Assuntos
Cóclea , Órgão Espiral , Animais , Camundongos , Diferenciação Celular/genética , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas Internas/fisiologia , Leucina/metabolismo , Mamíferos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(48): e2203935119, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36409884

RESUMO

The afferent innervation of the cochlea is comprised of spiral ganglion neurons (SGNs), which are characterized into four subtypes (Type 1A, B, and C and Type 2). However, little is known about the factors and/or processes that determine each subtype. Here, we present a transcriptional analysis of approximately 5,500 single murine SGNs collected across four developmental time points. All four subtypes are transcriptionally identifiable prior to the onset of coordinated spontaneous activity, indicating that the initial specification process is under genetic control. Trajectory analysis indicates that SGNs initially split into two precursor types (Type 1A/2 and Type 1B/C), followed by subsequent splits to give rise to four transcriptionally distinct subtypes. Differential gene expression, pseudotime, and regulon analyses were used to identify candidate transcription factors which may regulate the subtypes specification process. These results provide insights into SGN development and comprise a transcriptional atlas of SGN maturation across the prenatal period.


Assuntos
Neurônios , Gânglio Espiral da Cóclea , Gravidez , Feminino , Camundongos , Animais , Gânglio Espiral da Cóclea/metabolismo , Neurônios/metabolismo , Cóclea/metabolismo
4.
Front Cell Dev Biol ; 10: 974168, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211453

RESUMO

Nuclear positioning is important for the functionality of many cell types and is mediated by interactions of cytoskeletal elements and nucleoskeleton proteins. Nesprin proteins, part of the linker of nucleoskeleton and cytoskeleton (LINC) complex, have been shown to participate in nuclear positioning in multiple cell types. Outer hair cells (OHCs) in the inner ear are specialized sensory epithelial cells that utilize somatic electromotility to amplify auditory signals in the cochlea. Recently, Nesprin-4 (encoded by Syne4) was shown to play a crucial role in nuclear positioning in OHCs. Syne4 deficiency in humans and mice leads to mislocalization of the OHC nuclei and cell death resulting in deafness. However, it is unknown how Nesprin-4 mediates the position of the nucleus, and which other molecular components are involved in this process. Here, we show that the interaction of Nesprin-4 and the microtubule motor kinesin-1 is mediated by a conserved 4 amino-acid motif. Using in vivo AAV gene delivery, we show that this interaction is critical for nuclear positioning and hearing in mice. Nuclear mislocalization and cell death of OHCs coincide with the onset of hearing and electromotility and are solely restricted to outer, but not inner, hair cells. Likewise, the C. elegans functional homolog of Nesprin-4, UNC-83, uses a similar motif to mediate interactions between migrating nuclei and kinesin-1. Overall, our results suggest that OHCs require unique cellular machinery for proper nuclear positioning at the onset of electromotility. This machinery relies on the interaction between Nesprin-4 and kinesin-1 motors supporting a microtubule cargo model for nuclear positioning.

5.
Front Cell Dev Biol ; 10: 884240, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813214

RESUMO

The sensory epithelium of the mammalian cochlea, the organ of Corti, is comprised of at least seven unique cell types including two functionally distinct types of mechanosensory hair cells. All of the cell types within the organ of Corti are believed to develop from a population of precursor cells referred to as prosensory cells. Results from previous studies have begun to identify the developmental processes, lineage restrictions and signaling networks that mediate the specification of many of these cell types, however, the small size of the organ and the limited number of each cell type has hampered progress. Recent technical advances, in particular relating to the ability to capture and characterize gene expression at the single cell level, have opened new avenues for understanding cellular specification in the organ of Corti. This review will cover our current understanding of cellular specification in the cochlea, discuss the most commonly used methods for single cell RNA sequencing and describe how results from a recent study using single cell sequencing provided new insights regarding cellular specification.

6.
Hear Res ; 407: 108292, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34214947

RESUMO

The use of explosive devices in war and terrorism has increased exposure to concussive blasts among both military personnel and civilians, which can cause permanent hearing and balance deficits that adversely affect survivors' quality of life. Significant knowledge gaps on the underlying etiology of blast-induced hearing loss and balance disorders remain, especially with regard to the effect of blast exposure on the vestibular system, the impact of multiple blast exposures, and long-term recovery. To address this, we investigated the effects of blast exposure on the inner ear using a mouse model in conjunction with a high-fidelity blast simulator. Anesthetized animals were subjected to single or triple blast exposures, and physiological measurements and tissue were collected over the course of recovery for up to 180 days. Auditory brainstem responses (ABRs) indicated significantly elevated thresholds across multiple frequencies. Limited recovery was observed at low frequencies in single-blasted mice. Distortion Product Otoacoustic Emissions (DPOAEs) were initially absent in all blast-exposed mice, but low-amplitude DPOAEs could be detected at low frequencies in some single-blast mice by 30 days post-blast, and in some triple-blast mice at 180 days post-blast. All blast-exposed mice showed signs of Tympanic Membrane (TM) rupture immediately following exposure and loss of outer hair cells (OHCs) in the basal cochlear turn. In contrast, the number of Inner Hair Cells (IHCs) and spiral ganglion neurons was unchanged following blast-exposure. A significant reduction in IHC pre-synaptic puncta was observed in the upper turns of blast-exposed cochleae. Finally, we found no significant loss of utricular hair cells or changes in vestibular function as assessed by vestibular evoked potentials. Our results suggest that (1) blast exposure can cause severe, long-term hearing loss which may be partially due to slow TM healing or altered mechanical properties of healed TMs, (2) traumatic levels of sound can still reach the inner ear and cause basal OHC loss despite middle ear dysfunction caused by TM rupture, (3) blast exposure may result in synaptopathy in humans, and (4) balance deficits after blast exposure may be primarily due to traumatic brain injury, rather than damage to the peripheral vestibular system.


Assuntos
Perda Auditiva , Emissões Otoacústicas Espontâneas , Animais , Limiar Auditivo , Potenciais Evocados Auditivos do Tronco Encefálico , Células Ciliadas Auditivas Externas , Qualidade de Vida , Sistema Vestibular
9.
RNA Biol ; 18(8): 1160-1169, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33131415

RESUMO

The auditory system is a complex sensory network with an orchestrated multilayer regulatory programme governing its development and maintenance. Accumulating evidence has implicated long non-coding RNAs (lncRNAs) as important regulators in numerous systems, as well as in pathological pathways. However, their function in the auditory system has yet to be explored. Using a set of specific criteria, we selected four lncRNAs expressed in the mouse cochlea, which are conserved in the human transcriptome and are relevant for inner ear function. Bioinformatic characterization demonstrated a lack of coding potential and an absence of evolutionary conservation that represent properties commonly shared by their class members. RNAscope®  analysis of the spatial and temporal expression profiles revealed specific localization to inner ear cells. Sub-cellular localization analysis presented a distinct pattern for each lncRNA and mouse tissue expression evaluation displayed a large variability in terms of level and location. Our findings establish the expression of specific lncRNAs in different cell types of the auditory system and present a potential pathway by which the lncRNA Gas5 acts in the inner ear. Studying lncRNAs and deciphering their functions may deepen our knowledge of inner ear physiology and morphology and may reveal the basis of as yet unresolved genetic hearing loss-related pathologies. Moreover, our experimental design may be employed as a reference for studying other inner ear-related lncRNAs, as well as lncRNAs expressed in other sensory systems.


Assuntos
Cóclea/metabolismo , Loci Gênicos , Perda Auditiva Neurossensorial/genética , RNA Longo não Codificante/genética , Animais , Linhagem Celular , Cóclea/patologia , Biologia Computacional/métodos , Sequência Conservada , Embrião de Mamíferos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Perda Auditiva Neurossensorial/metabolismo , Perda Auditiva Neurossensorial/patologia , Humanos , Camundongos , RNA Longo não Codificante/classificação , RNA Longo não Codificante/metabolismo , Transcriptoma
10.
Mol Vis ; 26: 705-717, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33088174

RESUMO

Purpose: Single-cell RNA sequencing (scRNA-seq) is a powerful technique used to explore gene expression at the single cell level. However, appropriate preparation of samples is essential to obtain the most information out of this transformative technology. Generating high-quality single-cell suspensions from the retina is critical to preserve the native expression profile that will ensure meaningful transcriptome data analysis. Methods: We modified the conditions for rapid and optimal dissociation of retina sample preparation. We also included additional filtering steps in data analysis for retinal scRNA-seq. Results: We report a gentle method for dissociation of the mouse retina that minimizes cell death and preserves cell morphology. This protocol also results in detection of higher transcriptional complexity. In addition, the modified computational pipeline leads to better-quality single-cell RNA-sequencing data in retina samples. We also demonstrate the advantages and limitations of using fresh versus frozen retinas to prepare cell or nuclei suspensions for scRNA-seq. Conclusions: We provide a simple yet robust and reproducible protocol for retinal scRNA-seq analysis, especially for comparative studies.


Assuntos
Perfilação da Expressão Gênica/métodos , Retina/citologia , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Animais , Núcleo Celular , Biologia Computacional , Camundongos , Camundongos Endogâmicos C57BL , Retina/metabolismo , Software
11.
Clin Genet ; 98(4): 353-364, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33111345

RESUMO

Mutations in more than 150 genes are responsible for inherited hearing loss, with thousands of different, severe causal alleles that vary among populations. The Israeli Jewish population includes communities of diverse geographic origins, revealing a wide range of deafness-associated variants and enabling clinical characterization of the associated phenotypes. Our goal was to identify the genetic causes of inherited hearing loss in this population, and to determine relationships among genotype, phenotype, and ethnicity. Genomic DNA samples from informative relatives of 88 multiplex families, all of self-identified Jewish ancestry, with either non-syndromic or syndromic hearing loss, were sequenced for known and candidate deafness genes using the HEar-Seq gene panel. The genetic causes of hearing loss were identified for 60% of the families. One gene was encountered for the first time in human hearing loss: ATOH1 (Atonal), a basic helix-loop-helix transcription factor responsible for autosomal dominant progressive hearing loss in a five-generation family. Our results show that genomic sequencing with a gene panel dedicated to hearing loss is effective for genetic diagnoses in a diverse population. Comprehensive sequencing enables well-informed genetic counseling and clinical management by medical geneticists, otolaryngologists, audiologists, and speech therapists and can be integrated into newborn screening for deafness.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Surdez/genética , Predisposição Genética para Doença , Perda Auditiva/genética , Adolescente , Adulto , Criança , Pré-Escolar , Surdez/epidemiologia , Surdez/patologia , Feminino , Estudos de Associação Genética , Perda Auditiva/epidemiologia , Perda Auditiva/patologia , Humanos , Israel/epidemiologia , Judeus/genética , Masculino , Linhagem , Adulto Jovem
12.
Sci Rep ; 10(1): 10652, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32606369

RESUMO

Auditory dysfunction is the most prevalent injury associated with blast overpressure exposure (BOP) in Warfighters and civilians, yet little is known about the underlying pathophysiological mechanisms. To gain insights into these injuries, an advanced blast simulator was used to expose rats to BOP and assessments were made to identify structural and molecular changes in the middle/inner ears utilizing otoscopy, RNA sequencing (RNA-seq), and histopathological analysis. Deficits persisting up to 1 month after blast exposure were observed in the distortion product otoacoustic emissions (DPOAEs) and the auditory brainstem responses (ABRs) across the entire range of tested frequencies (4-40 kHz). During the recovery phase at sub-acute time points, low frequency (e.g. 4-8 kHz) hearing improved relatively earlier than for high frequency (e.g. 32-40 kHz). Perforation of tympanic membranes and middle ear hemorrhage were observed at 1 and 7 days, and were restored by day 28 post-blast. A total of 1,158 differentially expressed genes (DEGs) were significantly altered in the cochlea on day 1 (40% up-regulated and 60% down-regulated), whereas only 49 DEGs were identified on day 28 (63% up-regulated and 37% down-regulated). Seven common DEGs were identified at both days 1 and 28 following blast, and are associated with inner ear mechanotransduction, cytoskeletal reorganization, myelin development and axon survival. Further studies on altered gene expression in the blast-injured rat cochlea may provide insights into new therapeutic targets and approaches to prevent or treat similar cases of blast-induced auditory damage in human subjects.


Assuntos
Traumatismos por Explosões/patologia , Orelha Interna/patologia , Perda Auditiva/patologia , Animais , Audiometria de Tons Puros/métodos , Limiar Auditivo/fisiologia , Cóclea/patologia , Orelha Média/patologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Audição/fisiologia , Masculino , Mecanotransdução Celular/fisiologia , Emissões Otoacústicas Espontâneas/fisiologia , Otoscopia/métodos , Ratos , Ratos Sprague-Dawley
13.
Development ; 147(12)2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32571852

RESUMO

The cochlea, a coiled structure located in the ventral region of the inner ear, acts as the primary structure for the perception of sound. Along the length of the cochlear spiral is the organ of Corti, a highly derived and rigorously patterned sensory epithelium that acts to convert auditory stimuli into neural impulses. The development of the organ of Corti requires a series of inductive events that specify unique cellular characteristics and axial identities along its three major axes. Here, we review recent studies of the cellular and molecular processes regulating several aspects of cochlear development, such as axial patterning, cochlear outgrowth and cellular differentiation. We highlight how the precise coordination of multiple signaling pathways is required for the successful formation of a complete organ of Corti.


Assuntos
Cóclea/crescimento & desenvolvimento , Animais , Percepção Auditiva , Diferenciação Celular , Cóclea/anatomia & histologia , Cóclea/metabolismo , Células Ciliadas Auditivas/metabolismo , Mitose , Órgão Espiral/anatomia & histologia , Órgão Espiral/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais
14.
Nat Commun ; 11(1): 2389, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32404924

RESUMO

Mammalian hearing requires the development of the organ of Corti, a sensory epithelium comprising unique cell types. The limited number of each of these cell types, combined with their close proximity, has prevented characterization of individual cell types and/or their developmental progression. To examine cochlear development more closely, we transcriptionally profile approximately 30,000 isolated mouse cochlear cells collected at four developmental time points. Here we report on the analysis of those cells including the identification of both known and unknown cell types. Trajectory analysis for OHCs indicates four phases of gene expression while fate mapping of progenitor cells suggests that OHCs and their surrounding supporting cells arise from a distinct (lateral) progenitor pool. Tgfßr1 is identified as being expressed in lateral progenitor cells and a Tgfßr1 antagonist inhibits OHC development. These results provide insights regarding cochlear development and demonstrate the potential value and application of this data set.


Assuntos
Cóclea/citologia , Células Ciliadas Auditivas Internas/citologia , Células Ciliadas Auditivas Externas/citologia , Células Ciliadas Auditivas/citologia , Órgão Espiral/citologia , Animais , Células Cultivadas , Cóclea/embriologia , Cóclea/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Camundongos , Órgão Espiral/embriologia , Órgão Espiral/crescimento & desenvolvimento , Análise de Célula Única/métodos , Fatores de Tempo
15.
J Neurosci ; 40(20): 3915-3932, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32341094

RESUMO

Loss of sensory hair cells causes permanent hearing and balance deficits in humans and other mammals, but for nonmammals such deficits are temporary. Nonmammals recover hearing and balance sensitivity after supporting cells proliferate and differentiate into replacement hair cells. Evidence of mechanical differences between those sensory epithelia and their supporting cells prompted us to investigate whether the capacity to activate YAP, an effector in the mechanosensitive Hippo pathway, correlates with regenerative capacity in acceleration-sensing utricles of chickens and mice of both sexes. After hair cell ablation, YAP accumulated in supporting cell nuclei in chicken utricles and promoted regenerative proliferation, but YAP remained cytoplasmic and little proliferation occurred in mouse utricles. YAP localization in supporting cells was also more sensitive to shape change and inhibition of MST1/2 in chicken utricles than in mouse utricles. Genetic manipulations showed that in vivo expression of the YAP-S127A variant caused robust proliferation of neonatal mouse supporting cells, which produced progeny that expressed hair cell markers, but proliferative responses declined postnatally. Expression of YAP-5SA, which more effectively evades inhibitory phosphorylation, resulted in TEAD-dependent proliferation of striolar supporting cells, even in adult utricles. Conditional deletion of LATS1/2 kinases abolished the inhibitory phosphorylation of endogenous YAP and led to striolar proliferation in adult mouse utricles. The findings suggest that damage overcomes inhibitory Hippo signaling and facilitates regenerative proliferation in nonmammalian utricles, whereas constitutive LATS1/2 kinase activity suppresses YAP-TEAD signaling in mammalian utricles and contributes to maintaining the proliferative quiescence that appears to underlie the permanence of sensory deficits.SIGNIFICANCE STATEMENT Loud sounds, ototoxic drugs, infections, and aging kill sensory hair cells in the ear, causing irreversible hearing loss and balance deficits for millions. In nonmammals, damage evokes shape changes in supporting cells, which can divide and regenerate hair cells. Such shape changes are limited in mammalian ears, where supporting cells develop E-cadherin-rich apical junctions reinforced by robust F-actin bands, and the cells fail to divide. Here, we find that damage readily activates YAP in supporting cells within balance epithelia of chickens, but not mice. Deleting LATS kinases or expressing YAP variants that evade LATS-mediated inhibitory phosphorylation induces proliferation in supporting cells of adult mice. YAP signaling eventually may be harnessed to overcome proliferative quiescence that limits regeneration in mammalian ears.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas de Ciclo Celular/fisiologia , Células Ciliadas Auditivas/fisiologia , Regeneração Nervosa/genética , Regeneração Nervosa/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Animais Recém-Nascidos , Proteínas de Ciclo Celular/genética , Proliferação de Células , Embrião de Galinha , Galinhas , Deleção de Genes , Variação Genética , Perda Auditiva/genética , Fator de Crescimento de Hepatócito/antagonistas & inibidores , Estimulador Tireóideo de Ação Prolongada , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Sáculo e Utrículo/efeitos dos fármacos , Serina-Treonina Quinase 3 , Especificidade da Espécie , Proteínas Supressoras de Tumor/genética , Proteínas de Sinalização YAP
16.
Front Mol Neurosci ; 13: 13, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116546

RESUMO

Hearing loss is a problem that impacts a significant proportion of the adult population. Cochlear hair cell (HC) loss due to loud noise, chemotherapy and aging is the major underlying cause. A significant proportion of these individuals are dissatisfied with available treatment options which include hearing aids and cochlear implants. An alternative approach to restore hearing would be to regenerate HCs. Such therapy would require a recapitulation of the complex architecture of the organ of Corti, necessitating regeneration of both mature HCs and supporting cells (SCs). Transcriptional profiles of the mature cell types in the cochlea are necessary to can provide a metric for eventual regeneration therapies. To assist in this effort, we sought to provide the first single-cell characterization of the adult cochlear SC transcriptome. We performed single-cell RNA-Seq on FACS-purified adult cochlear SCs from the LfngEGFP adult mouse, in which SCs express GFP. We demonstrate that adult cochlear SCs are transcriptionally distinct from their perinatal counterparts. We establish cell-type-specific adult cochlear SC transcriptome profiles, and we validate these expression profiles through a combination of both fluorescent immunohistochemistry and in situ hybridization co-localization and quantitative polymerase chain reaction (qPCR) of adult cochlear SCs. Furthermore, we demonstrate the relevance of these profiles to the adult human cochlea through immunofluorescent human temporal bone histopathology. Finally, we demonstrate cell cycle regulator expression in adult SCs and perform pathway analyses to identify potential mechanisms for facilitating mitotic regeneration (cell proliferation, differentiation, and eventually regeneration) in the adult mammalian cochlea. Our findings demonstrate the importance of characterizing mature as opposed to perinatal SCs.

17.
NPJ Aging Mech Dis ; 6: 1, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31934345

RESUMO

Age-related hearing loss (ARHL) is one of the most common disorders affecting elderly individuals. There is an urgent need for effective preventive measures for ARHL because none are currently available. Cockayne syndrome (CS) is a premature aging disease that presents with progressive hearing loss at a young age, but is otherwise similar to ARHL. There are two human genetic complementation groups of CS, A and B. While the clinical phenotypes in patients are similar, the proteins have very diverse functions, and insight into their convergence is of great interest. Here, we use mouse models for CS (CSA -/- and CSB m/m ) that recapitulate the hearing loss in human CS patients. We previously showed that NAD+, a key metabolite with various essential functions, is reduced in CS and associated with multiple CS phenotypes. In this study, we report that NAD+ levels are reduced in the cochlea of CSB m/m mice and that short-term treatment (10 days) with the NAD+ precursor nicotinamide riboside (NR), prevents hearing loss, restores outer hair cell loss, and improves cochlear health in CSB m/m mice. Similar, but more modest effects were observed in CSA -/- mice. Remarkably, we observed a reduction in synaptic ribbon counts in the presynaptic zones of inner hair cells in both CSA -/- and CSB m/m mice, pointing to a converging mechanism for cochlear defects in CS. Ribbon synapses facilitate rapid and sustained synaptic transmission over long periods of time. Ribeye, a core protein of synaptic ribbons, possesses an NAD(H) binding pocket which regulates its activity. Intriguingly, NAD+ supplementation rescues reduced synaptic ribbon formation in both CSA -/- and CSB m/m mutant cochleae. These findings provide valuable insight into the mechanism of CS- and ARHL-associated hearing loss, and suggest a possible intervention.

18.
Artigo em Inglês | MEDLINE | ID: mdl-30617059

RESUMO

Within the mammalian cochlea, sensory hair cells and supporting cells are aligned in curvilinear rows that extend along the length of the tonotopic axis. In addition, all of the cells within the epithelium are uniformly polarized across the orthogonal neural-abneural axis. Finally, each hair cell is intrinsically polarized as revealed by the presence of an asymmetrically shaped and apically localized stereociliary bundle. It has been known for some time that many of the developmental processes that regulate these patterning events are mediated, to some extent, by the core planar cell polarity (PCP) pathway. This article will review more recent work demonstrating how components of the PCP pathway interact with cytoskeletal motor proteins to regulate cochlear outgrowth. Finally, a signaling pathway originally identified for its role in asymmetric cell divisions has recently been shown to mediate several aspects of intrinsic hair cell polarity, including kinocilia migration, bundle shape, and elongation.


Assuntos
Polaridade Celular , Mamíferos/crescimento & desenvolvimento , Mamíferos/metabolismo , Órgãos dos Sentidos/crescimento & desenvolvimento , Órgãos dos Sentidos/metabolismo , Animais , Cílios/fisiologia , Cóclea/fisiologia , Células Ciliadas Auditivas/fisiologia , Humanos , Morfogênese , Transdução de Sinais
19.
Artigo em Inglês | MEDLINE | ID: mdl-31616371

RESUMO

The analysis of pineal cell biology has undergone remarkable development as techniques have become available which allow for sequencing of entire transcriptomes and, most recently, the sequencing of the transcriptome of individual cells. Identification of at least nine distinct cell types in the rat pineal gland has been made possible, allowing identification of the precise cells of origin and expression of transcripts for the first time. Here the history and current state of knowledge generated by these transcriptomic efforts is reviewed, with emphasis on the insights suggested by the findings.

20.
Dev Biol ; 453(2): 191-205, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31185200

RESUMO

The development of asymmetric patterns along biologically relevant axes is a hallmark of many vertebrate organs or structures. One example is the sensory epithelium of the mammalian auditory system. Two distinct types of mechanosensory hair cells (inner and outer) and at least six types of associated supporting cells are precisely and asymmetrically arrayed along the radial (medial-lateral) axis of the cochlear spiral. Immunolabeling of developing cochleae indicates differential expression of Glycogen synthase kinase 3ß (GSK3ß) along the same axis. To determine whether GSK3ß plays a role in specification of cell fates along the medial-lateral axis, GSK3 activity was blocked pharmacologically in cochlear explants. Results indicate significant changes in both the number of hair cells and in the specification of hair cell phenotypes. The overall number of inner hair cells increased as a result of both a shift in the medial boundary between sensory and non-sensory regions of the cochlea and a change in the specification of inner and outer hair cell phenotypes. Previous studies have inhibited GSK3 as a method to examine effects of canonical Wnt signaling. However, quantification of changes in Wnt pathway target genes in GSK3-inhibited cochleae, and treatment with more specific Wnt agonists, indicated that the Wnt pathway is not activated. Instead, expression of Bmp4 in a population of GSK3ß-expressing cells was shown to be down-regulated. Finally, addition of BMP4 to GSK3-inhibited cochleae achieved a partial rescue of the hair cell phenotype. These results demonstrate a role for GSK3ß in the specification of cellular identities along the medial-lateral axis of the cochlea and provide evidence for a positive role for GSK3ß in the expression of Bmp4.


Assuntos
Linhagem da Célula , Glicogênio Sintase Quinase 3 beta/metabolismo , Células Ciliadas Auditivas/citologia , Células Ciliadas Auditivas/enzimologia , Animais , Proteína Morfogenética Óssea 4/farmacologia , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Feminino , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas Internas/citologia , Células Ciliadas Auditivas Internas/efeitos dos fármacos , Células Ciliadas Auditivas Internas/enzimologia , Células Ciliadas Auditivas Externas/citologia , Células Ciliadas Auditivas Externas/efeitos dos fármacos , Células Ciliadas Auditivas Externas/enzimologia , Camundongos , Modelos Biológicos , Inibidores de Proteínas Quinases/farmacologia , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA