Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
bioRxiv ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38826263

RESUMO

Female ticks deposit large egg clusters that range in size from hundreds to thousands. These clusters are restricted to a deposition site, usually under leaf litter and other debris. These sites can be exposed to periodic flooding, where the cluster of tick eggs can float to the surface or remain underneath organic debris entirely underwater. Here, we examined the viability of egg clusters from winter ticks, Dermacentor albipictus , and lone star ticks, Amblyomma americanum , when partially submerged or fully submerged in water in relation to the developmental stages of the eggs. In general, egg clusters that were older and partially submerged had a higher viability than fully submerged, young eggs in water. A. americanum was much more resistant to water exposure between the two species. These studies highlight that egg clusters for specific tick species can remain viable when exposed to water for at least two weeks, where eggs float on the surface. These studies also suggest that water-based distribution of egg clusters could occur for some species, and flooding will differentially impact tick egg survival based on the specific developmental stage of exposure and species.

2.
BMC Biol ; 22(1): 16, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273363

RESUMO

BACKGROUND: Understanding genome organization and evolution is important for species involved in transmission of human diseases, such as mosquitoes. Anophelinae and Culicinae subfamilies of mosquitoes show striking differences in genome sizes, sex chromosome arrangements, behavior, and ability to transmit pathogens. However, the genomic basis of these differences is not fully understood. METHODS: In this study, we used a combination of advanced genome technologies such as Oxford Nanopore Technology sequencing, Hi-C scaffolding, Bionano, and cytogenetic mapping to develop an improved chromosome-scale genome assembly for the West Nile vector Culex quinquefasciatus. RESULTS: We then used this assembly to annotate odorant receptors, odorant binding proteins, and transposable elements. A genomic region containing male-specific sequences on chromosome 1 and a polymorphic inversion on chromosome 3 were identified in the Cx. quinquefasciatus genome. In addition, the genome of Cx. quinquefasciatus was compared with the genomes of other mosquitoes such as malaria vectors An. coluzzi and An. albimanus, and the vector of arboviruses Ae. aegypti. Our work confirms significant expansion of the two chemosensory gene families in Cx. quinquefasciatus, as well as a significant increase and relocation of the transposable elements in both Cx. quinquefasciatus and Ae. aegypti relative to the Anophelines. Phylogenetic analysis clarifies the divergence time between the mosquito species. Our study provides new insights into chromosomal evolution in mosquitoes and finds that the X chromosome of Anophelinae and the sex-determining chromosome 1 of Culicinae have a significantly higher rate of evolution than autosomes. CONCLUSION: The improved Cx. quinquefasciatus genome assembly uncovered new details of mosquito genome evolution and has the potential to speed up the development of novel vector control strategies.


Assuntos
Aedes , Culex , Animais , Humanos , Masculino , Filogenia , Elementos de DNA Transponíveis/genética , Mosquitos Vetores/genética , Culex/genética , Aedes/genética , Cromossomos , Evolução Molecular
3.
bioRxiv ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38076852

RESUMO

Mosquitoes such as Aedes aegypti must consume a blood meal for the nutrients necessary for egg production. Several transcriptome and proteome changes occur post blood meal that likely corresponds with codon usage alterations. Transfer RNA (tRNA) is the adapter molecule that reads messenger RNA (mRNA) codons to add the appropriate amino acid during protein synthesis. Chemical modifications to tRNA enhance codons' decoding, improving the accuracy and efficiency of protein synthesis. Here, we examined tRNA modifications and transcripts associated with the blood meal and subsequent periods of vitellogenesis in A. aegypti. More specifically, we assessed tRNA transcript abundance and modification levels in the fat body at critical times post blood-feeding. Based on a combination of alternative codon usage and identification of particular modifications, we identified that increased transcription of tyrosine tRNAs is likely critical during the synthesis of egg yolk proteins in the fat body following a blood meal. Altogether, changes in both the abundance and modification of tRNA are essential factors in the process of vitellogenin production after blood-feeding in mosquitoes.

4.
Front Biosci (Elite Ed) ; 15(3): 15, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37743234

RESUMO

BACKGROUND: Extrapulmonary tuberculosis (EPTB) accounts for a fifth of all Mycobacterium tuberculosis (M. tb) infections worldwide. The rise of multidrug resistance in M. tb alongside the hepatotoxicity associated with antibiotics presents challenges in managing and treating tuberculosis (TB), thereby prompting a need for new therapeutic approaches. Administration of liposomal glutathione (L-GSH) has previously been shown to lower oxidative stress, enhance a granulomatous response, and reduce the burden of M. tb in the lungs of M. tb-infected mice. However, the effects of L-GSH supplementation during active EPTB in the liver and spleen have yet to be explored. METHODS: In this study, we evaluated hepatic glutathione (GSH) and malondialdehyde (MDA) levels, and the cytokine profiles of untreated and L-GSH-treated M. tb-infected wild type (WT) mice. Additionally, the hepatic and splenic M. tb burdens and tissue pathologies were also assessed. RESULTS: L-GSH supplementation increased total hepatic levels and reduced GSH. A decrease in the levels of MDA, oxidized GSH, and interleukin (IL)-6 was also detected following L-GSH treatment. Furthermore, L-GSH supplementation was observed to increase interferon-gamma (IFN-γ) and tumor necrosis factor (TNF)-α production and decrease IL-10 levels. M. tb survival was significantly reduced in the liver and spleen following L-GSH supplementation. L-GSH treatment also provided a host-protective effect in the liver and spleen of M. tb-infected mice. CONCLUSIONS: Overall, L-GSH supplementation elevated the levels of total and reduced forms of GSH in the liver and reduced the burden of M. tb by decreasing oxidative stress, enhancing the production of immunosupportive cytokines, and reducing the levels of immunosuppressive cytokines. These observed benefits highlight the potential of L-GSH supplementation during active EPTB and provide insight into novel therapeutic interventions against M. tb infections.


Assuntos
Baço , Tuberculose Extrapulmonar , Animais , Camundongos , Fígado , Citocinas , Glutationa , Suplementos Nutricionais
5.
Brain Commun ; 5(5): fcad245, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37767219

RESUMO

Functional disruption of the medial temporal lobe-dependent networks is thought to underlie episodic memory deficits in aging and Alzheimer's disease. Previous studies revealed that the anterior medial temporal lobe is more vulnerable to pathological and neurodegenerative processes in Alzheimer's disease. In contrast, cognitive and structural imaging literature indicates posterior, as opposed to anterior, medial temporal lobe vulnerability in normal aging. However, the extent to which Alzheimer's and aging-related pathological processes relate to functional disruption of the medial temporal lobe-dependent brain networks is poorly understood. To address this knowledge gap, we examined functional connectivity alterations in the medial temporal lobe and its immediate functional neighbourhood-the Anterior-Temporal and Posterior-Medial brain networks-in normal agers, individuals with preclinical Alzheimer's disease and patients with Mild Cognitive Impairment or mild dementia due to Alzheimer's disease. In the Anterior-Temporal network and in the perirhinal cortex, in particular, we observed an inverted 'U-shaped' relationship between functional connectivity and Alzheimer's stage. According to our results, the preclinical phase of Alzheimer's disease is characterized by increased functional connectivity between the perirhinal cortex and other regions of the medial temporal lobe, as well as between the anterior medial temporal lobe and its one-hop neighbours in the Anterior-Temporal system. This effect is no longer present in symptomatic Alzheimer's disease. Instead, patients with symptomatic Alzheimer's disease displayed reduced hippocampal connectivity within the medial temporal lobe as well as hypoconnectivity within the Posterior-Medial system. For normal aging, our results led to three main conclusions: (i) intra-network connectivity of both the Anterior-Temporal and Posterior-Medial networks declines with age; (ii) the anterior and posterior segments of the medial temporal lobe become increasingly decoupled from each other with advancing age; and (iii) the posterior subregions of the medial temporal lobe, especially the parahippocampal cortex, are more vulnerable to age-associated loss of function than their anterior counterparts. Together, the current results highlight evolving medial temporal lobe dysfunction in Alzheimer's disease and indicate different neurobiological mechanisms of the medial temporal lobe network disruption in aging versus Alzheimer's disease.

6.
Pathogens ; 12(8)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37624017

RESUMO

Mycobacterium avium (M. avium), a type of nontuberculous mycobacteria (NTM), poses a risk for pulmonary infections and disseminated infections in immunocompromised individuals. Conventional treatment consists of a 12-month regimen of the first-line antibiotics rifampicin and azithromycin. However, the treatment duration and low antibiotic tolerability present challenges in the treatment of M. avium infection. Furthermore, the emergence of multidrug-resistant mycobacterium strains prompts a need for novel treatments against M. avium infection. This study aims to test the efficacy of a novel antimicrobial peptide, cyclic [R4W4], alongside the first-line antibiotics azithromycin and rifampicin in reducing M. avium survival. Colony-forming unit (CFU) counts were assessed after treating M. avium cultures with varying concentrations of cyclic [R4W4] alone or in conjunction with azithromycin or rifampicin 3 h and 4 days post-treatment. M. avium growth was significantly reduced 4 days after cyclic [R4W4] single treatment. Additionally, cyclic [R4W4]-azithromycin and cyclic [R4W4]-rifampicin combination treatments at specific concentrations significantly reduced M. avium survival 3 h and 4 days post-treatment compared with single antibiotic treatment alone. These findings demonstrate cyclic [R4W4] as a potent treatment method against M. avium and provide insight into novel therapeutic approaches against mycobacterium infections.

7.
Antioxidants (Basel) ; 12(7)2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37507915

RESUMO

Glutathione (GSH) is an important intracellular antioxidant responsible for neutralizing reactive oxygen species (ROS). Our laboratory previously demonstrated that the oral administration of liposomal GSH improves immune function against mycobacterium infections in healthy patients along with patients with HIV and Type 2 diabetes. We aim to determine if the topical application of a glutathione-cyclodextrin nanoparticle complex (GSH-CD) confers a therapeutic effect against mycobacterium infections. In our study, healthy participants received either topical GSH-CD (n = 15) or placebo (n = 15) treatment. Subjects were sprayed four times twice a day for three days topically on the abdomen. Blood draws were collected prior to application, and at 1, 4, and 72 h post-initial topical application. GSH, malondialdehyde (MDA), and cytokine levels were assessed in the processed blood samples of study participants. Additionally, whole blood cultures from study participants were challenged with Mycobacterium avium (M. avium) infection in vitro to assess mycobacterium survival post-treatment. Topical GSH-CD treatment was observed to elevate GSH levels in peripheral blood mononuclear cells (PBMCs) and red blood cells and decrease MDA levels in PBMCs 72 h post-treatment. An increase in plasma IL-2, IFN-γ, IL-12p70, and TNF-α was observed at 72 h post-topical GSH-CD treatment. Enhanced mycobacterium clearance was observed at 4 h and 72 h post-topical GSH-CD treatment. Overall, topical GSH-CD treatment was associated with improved immune function against M. avium infection. The findings of this pilot study suggest GSH-cyclodextrin complex formulation can be used topically as a safe alternative mode of GSH delivery in the peripheral blood.

8.
Cell Stress Chaperones ; 28(5): 541-549, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37392307

RESUMO

Climate change is leading to substantial global thermal changes, which are particularly pronounced in polar regions. Therefore, it is important to examine the impact of heat stress on the reproduction of polar terrestrial arthropods, specifically, how brief extreme events may alter survival. We observed that sublethal heat stress reduces male fecundity in an Antarctic mite, yielding females that produced fewer viable eggs. Females and males collected from microhabitats with high temperatures showed a similar reduction in fertility. This impact is temporary, as indicated by recovery of male fecundity following return to cooler, stable conditions. The diminished fecundity is likely due to a drastic reduction in the expression of male-associated factors that occur in tandem with a substantial increase in the expression of heat shock proteins. Cross-mating between mites from different sites confirmed that heat-exposed populations have impaired male fertility. However, the negative impacts are transient as the effect on fertility declines with recovery time under less stressful conditions. Modeling indicated that heat stress is likely to reduce population growth and that short bouts of non-lethal heat stress could have substantial reproductive effects on local populations of Antarctic arthropods.


Assuntos
Calor Extremo , Ácaros , Feminino , Animais , Masculino , Regiões Antárticas , Fertilidade , Resposta ao Choque Térmico
9.
Biol Open ; 12(7)2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37345480

RESUMO

During embryogenesis the nascent Caenorhabditis elegans epidermis secretes an apical extracellular matrix (aECM) that serves as an external stabilizer, preventing deformation of the epidermis by mechanical forces exerted during morphogenesis. At present, the factors that contribute to aECM function are mostly unknown, including the aECM components themselves, their posttranslational regulators, and the pathways required for their secretion. Here we showed that two proteins previously linked to aECM function, SYM-3/FAM102A and SYM-4/WDR44, colocalize to intracellular and membrane-associated puncta and likely function in a complex. Proteomics experiments also suggested potential roles for SYM-3/FAM102A and SYM-4/WDR44 family proteins in intracellular trafficking. Nonetheless, we found no evidence to support a critical function for SYM-3 or SYM-4 in the apical deposition of two aECM components, NOAH-1 and FBN-1. Moreover, loss of a key splicing regulator of fbn-1, MEC-8/RBPMS2, had surprisingly little effect on the abundance or deposition of FBN-1. Using a focused screening approach, we identified 32 additional proteins that likely contribute to the structure and function of the embryonic aECM. We also characterized morphogenesis defects in embryos lacking mir-51 microRNA family members, which display a similar phenotype to mec-8; sym double mutants. Collectively, these findings add to our knowledge of factors controlling embryonic morphogenesis.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Morfogênese/genética , Matriz Extracelular/metabolismo , Desenvolvimento Embrionário/genética
10.
Biomedicines ; 11(5)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37239011

RESUMO

Glutathione (GSH) is an antioxidant in human cells that is utilized to prevent damage occurred by reactive oxygen species, free radicals, peroxides, lipid peroxides, and heavy metals. Due to its immunological role in tuberculosis (TB), GSH is hypothesized to play an important part in the immune response against M. tb infection. In fact, one of the hallmark structures of TB is granuloma formation, which involves many types of immune cells. T cells, specifically, are a major component and are involved in the release of cytokines and activation of macrophages. GSH also serves an important function in macrophages, natural killer cells, and T cells in modulating their activation, their metabolism, proper cytokine release, proper redox activity, and free radical levels. For patients with increased susceptibility, such as those with HIV and type 2 diabetes, the demand for higher GSH levels is increased. GSH acts as an important immunomodulatory antioxidant by stabilizing redox activity, shifting of cytokine profile toward Th1 type response, and enhancing T lymphocytes. This review compiles reports showing the benefits of GSH in improving the immune responses against M. tb infection and the use of GSH as an adjunctive therapy for TB.

11.
bioRxiv ; 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37163004

RESUMO

During embryogenesis the nascent Caenorhabditis elegans epidermis secretes an apical extracellular matrix (aECM) that serves as an external stabilizer, preventing deformation of the epidermis by mechanical forces exerted during morphogenesis. We showed that two conserved proteins linked to this process, SYM-3/FAM102A and SYM-4/WDR44, colocalize to intracellular and membrane-associated puncta and likely function together in a complex. Proteomics data also suggested potential roles for FAM102A and WDR44 family proteins in intracellular trafficking, consistent with their localization patterns. Nonetheless, we found no evidence to support a clear function for SYM-3 or SYM-4 in the apical deposition of two aECM components, FBN-1 and NOAH. Surprisingly, loss of MEC-8/RBPMS2, a conserved splicing factor and regulator of fbn-1 , had little effect on the abundance or deposition of FBN-1 to the aECM. Using a focused screening approach, we identified 32 additional proteins that likely contribute to the structure and function of the embryonic aECM. Lastly, we examined morphogenesis defects in embryos lacking mir-51 microRNA family members, which display a related embryonic phenotype to mec-8; sym double mutants. Collectively, our findings add to our knowledge of pathways controlling embryonic morphogenesis. SUMMARY STATEMENT: We identify new proteins in apical ECM biology in C. elegans and provide evidence that SYM-3/FAM102A and SYM-4/WDR44 function together in trafficking but do not regulate apical ECM protein deposition.

12.
medRxiv ; 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36711782

RESUMO

Functional disruption of the medial temporal lobe-dependent networks is thought to underlie episodic memory deficits in aging and Alzheimer's disease. Previous studies revealed that the anterior medial temporal lobe is more vulnerable to pathological and neurodegenerative processes in Alzheimer's disease. In contrast, cognitive and structural imaging literature indicates posterior, as opposed to anterior, medial temporal lobe vulnerability in normal aging. However, the extent to which Alzheimer's and aging-related pathological processes relate to functional disruption of the medial temporal lobe-dependent brain networks is poorly understood. To address this knowledge gap, we examined functional connectivity alterations in the medial temporal lobe and its immediate functional neighborhood - the Anterior-Temporal and Posterior-Medial brain networks - in normal agers, individuals with preclinical Alzheimer's disease, and patients with Mild Cognitive Impairment or mild dementia due to Alzheimer's disease. In the Anterior-Temporal network and in the perirhinal cortex, in particular, we observed an inverted 'U-shaped' relationship between functional connectivity and Alzheimer's stage. According to our results, the preclinical phase of Alzheimer's disease is characterized by increased functional connectivity between the perirhinal cortex and other regions of the medial temporal lobe, as well as between the anterior medial temporal lobe and its one-hop neighbors in the Anterior-Temporal system. This effect is no longer present in symptomatic Alzheimer's disease. Instead, patients with symptomatic Alzheimer's disease displayed reduced hippocampal connectivity within the medial temporal lobe as well as hypoconnectivity within the Posterior-Medial system. For normal aging, our results led to three main conclusions: (1) intra-network connectivity of both the Anterior-Temporal and Posterior-Medial networks declines with age; (2) the anterior and posterior segments of the medial temporal lobe become increasingly decoupled from each other with advancing age; and, (3) the posterior subregions of the medial temporal lobe, especially the parahippocampal cortex, are more vulnerable to age-associated loss of function than their anterior counterparts. Together, the current results highlight evolving medial temporal lobe dysfunction in Alzheimer's disease and indicate different neurobiological mechanisms of the medial temporal lobe network disruption in aging vs. Alzheimer's disease.

13.
PLoS One ; 17(3): e0266239, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35349591

RESUMO

Cryptococcus neoformans is a fungus that is able to survive abnormally high levels of ionizing radiation (IR). The radiolysis of water by IR generates reactive oxygen species (ROS) such as H2O2 and OH-. C. neoformans withstands the damage caused by IR and ROS through antioxidant production and enzyme-catalyzed breakdown of ROS. Given these particular cellular protein needs, questions arise whether transfer ribonucleic acids molecules (tRNAs) undergo unique chemical modifications to maintain their structure, stability, and/or function under such environmental conditions. Here, we investigated the effects of IR and H2O2 exposure on tRNAs in C. neoformans. We experimentally identified the modified nucleosides present in C. neoformans tRNAs and quantified changes in those modifications upon exposure to oxidative conditions. To better understand these modified nucleoside results, we also evaluated tRNA pool composition in response to the oxidative conditions. We found that regardless of environmental conditions, tRNA modifications and transcripts were minimally affected. A rationale for the stability of the tRNA pool and its concomitant profile of modified nucleosides is proposed based on the lack of codon bias throughout the C. neoformans genome and in particular for oxidative response transcripts. Our findings suggest that C. neoformans can rapidly adapt to oxidative environments as mRNA translation/protein synthesis are minimally impacted by codon bias.


Assuntos
Criptococose , Cryptococcus neoformans , Criptococose/microbiologia , Cryptococcus neoformans/fisiologia , Peróxido de Hidrogênio/metabolismo , Nucleosídeos/metabolismo , Oxidantes/metabolismo , RNA de Transferência/metabolismo , Radiação Ionizante , Espécies Reativas de Oxigênio/metabolismo
14.
Insect Biochem Mol Biol ; 143: 103741, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35181477

RESUMO

As carriers of multiple human diseases, understanding the mechanisms behind mosquito reproduction may have implications for remediation strategies. Transfer RNA (tRNA) acts as the adapter molecule of amino acids and are key components in protein synthesis. A critical factor in the function of tRNAs is chemical modifications which contribute to codon-anticodon interactions. Here, we provide an assessment of tRNA modifications between sexes for three mosquito species and examine the correlation of transcript levels underlying key proteins involved in tRNA modification. Thirty-three tRNA modifications were detected among mosquito species and most of these modifications are higher in females compared to males for three mosquito species. Analysis of previous male and female RNA-seq datasets indicated a similar increase in transcript levels of tRNA-modifying enzymes in females among six mosquito species, supporting our observed female enrichment of tRNA modifications. Tissues-specific expressional studies revealed higher transcript levels for tRNA-modifying enzymes in the ovaries for Aedes aegypti, but not male reproductive tissues. These studies suggest that tRNA modifications may be critical to reproduction in mosquitoes, representing a potential novel target for control through suppression of fecundity.


Assuntos
Culicidae , Animais , Anticódon , Culicidae/genética , Culicidae/metabolismo , Feminino , Masculino , Biossíntese de Proteínas , Processamento Pós-Transcricional do RNA , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo
15.
J Pastoral Care Counsel ; 75(3): 207-213, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34384033

RESUMO

This article describes a pedagogical classroom exercise that encourages ministry students to understand the jarring experience some people may confront when their life stories are disrupted and their ways of making meaning are challenged. Contemporary work in narrative and meaning making that grounds the exercise is presented. This exercise may be helpful to professionals who teach or mentor ministry students in their care of those enduring loss.


Assuntos
Assistência Religiosa , Humanos , Narração , Estudantes
16.
Angew Chem Int Ed Engl ; 60(8): 3961-3966, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33125801

RESUMO

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has become the gold-standard technique to study RNA and its various modifications. While most research on RNA nucleosides has been focused on their biological roles, discovery of new modifications remains of interest. With state-of-the-art technology, the presence of artifacts can confound the identification of new modifications. Here, we report the characterization of a non-natural mcm5 isoC ribonucleoside in S. cerevisiae total tRNA hydrolysate by higher-energy collisional dissociation (HCD)-based fingerprints and isotope labeling of RNA. Its discovery revealed a class of amino/imino ribonucleoside artifacts that are generated during RNA hydrolysis under ammonium-buffered mild basic conditions. We then identified digestion conditions that can reduce or eliminate their formation. These finding and method enhancements will improve the accurate detection of new RNA modifications.


Assuntos
Nucleosídeos/química , RNA/análise , Compostos de Sulfidrila/química , Aminação , Cromatografia Líquida de Alta Pressão , Hidrólise , Marcação por Isótopo , RNA/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Espectrometria de Massas em Tandem
17.
Matern Child Health J ; 23(1): 54-60, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30019156

RESUMO

Objectives The Edinburgh Postnatal Depression Scale (EPDS) identifies women with depressive symptoms in pregnancy. Our primary objective was to determine the prevalence of EPDS screen-positive women delivering on our no prenatal care (laborist) service and to compare these patients to private patients delivering with prenatal care. Methods Retrospective cohort analysis of EPDS scores during January 1, 2015 to June 18, 2015 was conducted. Scores ≥ 10 were considered at-risk. Results were analyzed as an aggregate and then as no prenatal care versus prenatal care. Characteristics for patients with at-risk scores (EPDS ≥ 10) versus low-risk scores (EPDS < 10) were quantified. Results Analysis occurred on 970 women. EPDS ≥ 10 occurred in 12.4% (n = 120/970). Positive EPDS score was 21.1% without prenatal care versus 10.9% with adequate prenatal care (P = 0.003). Maternal demographics and delivery characteristics were clinically similar in patients with prenatal care compared to no prenatal care. Private insurance was more common in patients with prenatal care compared to no prenatal care (23.5 versus 8.1%, P = 0.0001). However, analysis of patients with EPDS > 10 showed non-significant distributions of ethnicity, private insurance, Medicaid, or no insurance compared to patients with EPDS < 10. Conclusion for Practice Patients without prenatal care who arrive solely for urgent "drop-in" delivery have a measurable increased risk factor for postpartum depressive symptoms. Ethnicity and payor status were related to adequacy of prenatal care but were not significant variables when analyzing patients with EPDS > 10. Laborist services providing care to "drop-in" patients should recognize this increased risk and develop policies for screening, referral and follow-up of at-risk patients.


Assuntos
Depressão Pós-Parto/diagnóstico , Cuidado Pré-Natal/normas , Adulto , Depressão Pós-Parto/psicologia , Feminino , Humanos , Programas de Rastreamento/métodos , Gravidez , Cuidado Pré-Natal/estatística & dados numéricos , Prevalência , Escalas de Graduação Psiquiátrica , Psicometria/instrumentação , Psicometria/métodos , Estudos Retrospectivos , Fatores de Risco , Inquéritos e Questionários
18.
ACS Chem Biol ; 13(3): 533-536, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29298376

RESUMO

Potential in vivo applications of RNA interference (RNAi) require suppression of various off-target activities. Herein, we report that replacement of a single phosphate linkage between the first and second nucleosides of the passenger strand with an amide linkage almost completely abolished its undesired activity and restored the desired activity of guide strands that had been compromised by unfavorable amide modifications. Molecular modeling suggested that the observed effect was most likely due to suppressed loading of the amide-modified strand into Ago2 caused by inability of amide to adopt the conformation required for the backbone twist that docks the first nucleotide of the guide strand in the MID domain of Ago2. Eliminating off-target activity of the passenger strand will be important for improving therapeutic potential of RNAi.


Assuntos
Amidas/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas Argonautas , Humanos , Modelos Moleculares , Conformação Proteica , Interferência de RNA , RNA Guia de Cinetoplastídeos
20.
PLoS One ; 12(11): e0188593, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29176845

RESUMO

Since its initial application in mammalian cells, CRISPR-Cas9 has rapidly become a preferred method for genome engineering experiments. The Cas9 nuclease is targeted to genomic DNA using guide RNAs (gRNA), either as the native dual RNA system consisting of a DNA-targeting CRISPR RNA (crRNA) and a trans-activating crRNA (tracrRNA), or as a chimeric single guide RNA (sgRNA). Entirely DNA-free CRISPR-Cas9 systems using either Cas9 protein or Cas9 mRNA and chemically synthesized gRNAs allow for transient expression of CRISPR-Cas9 components, thereby reducing the potential for off-targeting, which is a significant advantage in therapeutic applications. In addition, the use of synthetic gRNA allows for the incorporation of chemical modifications for enhanced properties including improved stability. Previous studies have demonstrated the utility of chemically modified gRNAs, but have focused on one pattern with multiple modifications in co-electroporation with Cas9 mRNA or multiple modifications and patterns with Cas9 plasmid lipid co-transfections. Here we present gene editing results using a series of chemically modified synthetic sgRNA molecules and chemically modified crRNA:tracrRNA molecules in both electroporation and lipid transfection assessing indel formation and/or phenotypic gene knockout. We show that while modifications are required for co-electroporation with Cas9 mRNA, some modification patterns of the gRNA are toxic to cells compared to the unmodified gRNA and most modification patterns do not significantly improve gene editing efficiency. We also present modification patterns of the gRNA that can modestly improve Cas9 gene editing efficiency when co-transfected with Cas9 mRNA or Cas9 protein (> 1.5-fold difference). These results indicate that for certain applications, including those relevant to primary cells, the incorporation of some, but not all chemical modification patterns on synthetic crRNA:tracrRNA or sgRNA can be beneficial to CRISPR-Cas9 gene editing.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes , Organotiofosfatos/toxicidade , RNA Guia de Cinetoplastídeos/metabolismo , Morte Celular/efeitos dos fármacos , Eletroporação , Humanos , Células K562 , Lipídeos/química , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA