Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
J Sports Sci Med ; 23(2): 436-444, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38841644

RESUMO

The purpose of this study was to examine the differences in thoracolumbar fascia (TLF) and lumbar muscle modulus in individuals with and without hamstring injury using shear wave elastography (SWE). Thirteen male soccer players without a previous hamstring injury and eleven players with a history of hamstring injury performed passive and active (submaximal) knee flexion efforts from 0°, 45° and 90° angle of knee flexion as well as an active prone trunk extension test. The elastic modulus of the TLF, the erector spinae (ES) and the multifidus (MF) was measured using ultrasound SWE simultaneously with the surface electromyography (EMG) signal of the ES and MF. The TLF SWE modulus was significantly (p < 0.05) higher in the injured group (range: 29.86 ± 8.58 to 66.57 ± 11.71 kPa) than in the uninjured group (range: 17.47 ± 9.37 to 47.03 ± 16.04 kPa). The ES and MF modulus ranged from 14.97 ± 4.10 to 66.57 ± 11.71 kPa in the injured group and it was significantly (p < .05) greater compared to the uninjured group (range: 11.65 ± 5.99 to 40.49 ± 12.35 kPa). TLF modulus was greater than ES and MF modulus (p < 0.05). Active modulus was greater during the prone trunk extension test compared to the knee flexion tests and it was greater in the knee flexion test at 0° than at 90° (p < 0.05). The muscle EMG was greater in the injured compared to the uninjured group in the passive tests only (p < 0.05). SWE modulus of the TLF and ES and MF was greater in soccer players with previous hamstring injury than uninjured players. Further research could establish whether exercises that target the paraspinal muscles and the lumbar fascia can assist in preventing individuals with a history of hamstring injury from sustaining a new injury.


Assuntos
Técnicas de Imagem por Elasticidade , Eletromiografia , Fáscia , Músculos Isquiossurais , Futebol , Humanos , Masculino , Futebol/lesões , Futebol/fisiologia , Adulto Jovem , Músculos Isquiossurais/lesões , Músculos Isquiossurais/fisiologia , Músculos Isquiossurais/diagnóstico por imagem , Fáscia/lesões , Fáscia/diagnóstico por imagem , Fáscia/fisiologia , Fáscia/fisiopatologia , Módulo de Elasticidade , Traumatismos em Atletas/fisiopatologia , Traumatismos em Atletas/diagnóstico por imagem , Adulto , Região Lombossacral/lesões , Região Lombossacral/diagnóstico por imagem , Músculos Paraespinais/diagnóstico por imagem , Músculos Paraespinais/fisiologia , Músculos Paraespinais/fisiopatologia , Adolescente
2.
J Funct Morphol Kinesiol ; 9(2)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38651431

RESUMO

The purpose of this study was to examine the effect of pelvic tilt angle on maximum hip and knee muscles' strength and antagonist/agonist strength ratios. Twenty-one young males and females performed maximum isokinetic concentric knee extension-flexion and hip extension-flexion efforts at 60°·s-1, 120°·s-1, and 180°·s-1 from three positions: anterior, neutral, and posterior pelvic tilt. Peak torques and knee flexor-to-extensor and hip flexor-to-extensor torque ratios were analyzed. An analysis of variance showed that peak hip extensor torque was significantly greater in the anterior pelvic tilt condition compared to either neutral or posterior pelvic tilt angles (p > 0.05). No effects of changing pelvic tilt angle on hip flexor, knee flexor, or knee extension values were found (p > 0.05). The hip flexor-to-extensor torque ratio decreased (p < 0.05) in the anterior pelvic tilt position relative to the other positions, while no difference in the knee flexor-to-extensor ratio between pelvic positions was observed (p > 0.05). This study shows that an increased anterior pelvic tilt affects the maximum isokinetic strength of the hip extensors, supporting previous suggestions regarding the link between pelvic position and hip and knee muscle function. Isokinetic testing from an anterior pelvic tilt position may alter the evaluation of hip flexion/extension strength.

3.
Scand J Med Sci Sports ; 34(4): e14621, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38597348

RESUMO

Tendon properties impact human locomotion, influencing sports performance, and injury prevention. Hamstrings play a crucial role in sprinting, particularly the biceps femoris long head (BFlh), which is prone to frequent injuries. It remains uncertain if BFlh exhibits distinct mechanical properties compared to other hamstring muscles. This study utilized free-hand three-dimensional ultrasound to assess morphological and mechanical properties of distal hamstrings tendons in 15 men. Scans were taken in prone position, with hip and knee extended, at rest and during 20%, 40%, 60%, and 80% of maximal voluntary isometric contraction of the knee flexors. Tendon length, volume, cross-sectional area (CSA), and anteroposterior (AP) and mediolateral (ML) widths were quantified at three locations. Longitudinal and transverse deformations, stiffness, strain, and stress were estimated. The ST had the greatest tendon strain and the lowest stiffness as well as the highest CSA and AP and ML width strain compared to other tendons. Biceps femoris short head (BFsh) exhibited the least strain, AP and ML deformation. Further, BFlh displayed the highest stiffness and stress, and BFsh had the lowest stress. Additionally, deformation varied by region, with the proximal site showing generally the lowest CSA strain. Distal tendon mechanical properties differed among the hamstring muscles during isometric knee flexions. In contrast to other bi-articular hamstrings, the BFlh high stiffness and stress may result in greater energy absorption by its muscle fascicles, rather than the distal tendon, during late swing in sprinting. This could partly account for the increased incidence of hamstring injuries in this muscle.


Assuntos
Músculos Isquiossurais , Músculo Esquelético , Masculino , Humanos , Músculo Esquelético/fisiologia , Tendões/diagnóstico por imagem , Tendões/fisiologia , Músculos Isquiossurais/fisiologia , Joelho/diagnóstico por imagem , Joelho/fisiologia , Contração Isométrica/fisiologia , Ultrassonografia
4.
J Funct Morphol Kinesiol ; 9(2)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38651428

RESUMO

Core stability training is crucial for competitive athletes, individuals who want to improve their health and physical performance, and those undergoing clinical rehabilitation. This study compared the ultrasound (US) muscle thickness of the abdominals and lumbar multifidus (LM) muscles between seven popular trunk stability exercises performed using hollowing and bracing maneuvers. Forty-four healthy young adults, aged between 21 and 32 years, performed a plank, bird dog, beast crawl, dead bug, Pilates tap, bridge, and side planks using the bracing and the hollowing maneuver. The thickness of the transversus abdominis (TrA), internal oblique (IO), and LM muscles was measured simultaneously using two ultrasound machines. Analysis of variance designs indicated that during hollowing, the bird dog and side plank exercises resulted in the greatest increase in the muscle's relative thickness overall. The relative thickness of all muscles was significantly greater (p < 0.001) during hollowing (22.7 ± 7.80 to 106 ± 24.5% of rest) compared to bracing (18.7 ± 7.40 to 87.1 ± 20.9% of rest). The TrA showed the greatest increase in thickness (p < 0.001) compared to the IO and LM. Additionally, the IO had a greater increase in thickness (p < 0.001) than the LM. In conclusion, our findings indicate that the bird dog and side plank exercises, when performed with hollowing, showed the most significant total muscle thickness increase. Notably, the hollowing maneuver enhances the thickness of the TrA, IO, and LM muscles more than the bracing maneuver. This contributes to the discussion on optimal strategies for dynamic core stabilization.

5.
Med Sci Sports Exerc ; 56(5): 851-859, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38190382

RESUMO

INTRODUCTION: The aim of the study was to compare maximal force, force steadiness, and the discharge characteristics of motor units in the tibialis anterior (TA) muscle during submaximal isometric contractions for ankle dorsiflexion and adduction of the foot. METHODS: Nineteen active young adults performed maximal and submaximal isometric dorsiflexion and adduction contractions at five target forces (5%, 10%, 20%, 40%, and 60% maximal voluntary contraction [MVC]). The activity of motor units in TA was recorded by high-density EMG. RESULTS: The maximal force was similar between dorsiflexion and adduction, despite EMG amplitude for TA being greater ( P < 0.05) during dorsiflexion than adduction. Τhe coefficient of variation (CV) for force (force steadiness) during dorsiflexion was always less ( P < 0.05) than during adduction, except of 5% MVC force. No differences were observed for mean discharge rate; however, the regression between the changes in discharge rate relative to the change of force was significant for dorsiflexion ( R2 = 0.25, P < 0.05) but not for adduction. Discharge variability, however, was usually less during dorsiflexion. The CV for interspike interval was less ( P < 0.05) at 10%, 20%, and 40% MVC but greater at 60% MVC during dorsiflexion than adduction. Similarly, the SD values of the filtered cumulative spike train of the motor units in TA were less ( P < 0.05) at 5%, 10%, 20%, and 40% MVC during dorsiflexion than adduction. CONCLUSIONS: Although the mean discharge rate of motor units in TA was similar during foot adduction and ankle dorsiflexion, discharge variability was less during dorsiflexion resulting in less accurate performance of the steady adduction contractions. The neural drive to bifunctional muscles differs during their accessory function, which must be considered for training and rehabilitation interventions.


Assuntos
Tornozelo , Músculo Esquelético , Adulto Jovem , Humanos , Tornozelo/fisiologia , Músculo Esquelético/fisiologia , Articulação do Tornozelo/fisiologia , Contração Isométrica/fisiologia , , Eletromiografia/métodos , Contração Muscular/fisiologia
6.
J Anat ; 244(3): 438-447, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37965913

RESUMO

The purpose of this study was to examine the effect of passive and active knee flexion efforts on the stiffness of the thoracolumbar (TLF), semitendinosus (STF), and semimembranosus fascia (SMF). Fourteen young healthy males participated in this study. Using ultrasound shear-wave elastography, fascia elastic modulus was measured at rest (passive condition) and during submaximal isometric knee flexion efforts (active condition) with the hip at neutral position and the knee flexed at 0°, 45°, and 90°. Analysis of variance designs indicated that when the knee was passively extended from 90° to 0°, shear modulus of the TLF, SMF, and STF increased significantly (p < 0.05). Similarly, active knee flexion contractions caused a significant increase in TLF, SMF, and STF shear modulus (p < 0.001). Compared to hamstring fascia, the TLF showed greater thickness but a lower shear modulus (p < 0.05) while STF modulus was greater compared that to SMF during active contraction (p < 0.05). These results indicate that exercising the hamstring muscles can remotely influence the stiffness of the fascia which surrounds the lumbar area.


Assuntos
Técnicas de Imagem por Elasticidade , Músculos Isquiossurais , Masculino , Humanos , Joelho , Articulação do Joelho/fisiologia , Músculos Isquiossurais/diagnóstico por imagem , Técnicas de Imagem por Elasticidade/métodos , Fáscia/diagnóstico por imagem , Amplitude de Movimento Articular/fisiologia , Módulo de Elasticidade , Músculo Esquelético/fisiologia
7.
J Electromyogr Kinesiol ; 73: 102828, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37782992

RESUMO

The aim of the study was to assess the potential influence of footedness and dominance on maximal force, force fluctuations and neural drive during dorsiflexion. Fifteen left-footed (LF) and fifteen right-footed (RF) young adults performed 2 maximal voluntary contractions (MVC) and 3 steady submaximal isometric contractions at five target forces (5, 10, 20, 40 and 60% MVC) with the dorsiflexors of both legs. High-density electromyography (EMG) was used to record the discharge characteristics of motor units (MUs) of Tibialis Anterior. MVC force and EMG amplitude (root mean square) were similar between the two legs and groups (p > 0.05). Force fluctuations (Coefficient of Variation, CoV for force), mean discharge rate of MUs, discharge variability (CoV of interspike interval), and variability in neural drive (standard deviation of filtered cumulative spike train) were greater (p < 0.05) and the input-output gain of the MUs (ΔDR/ΔF) was lower (p < 0.05) for the LF relative to the RF group. The differences in force fluctuations during steady contractions with the dorsiflexors were associated with footedness but not with dominance. They reflect greater variability in motor neuron output, as suggested by coefficient of variation for interspike interval (independent input) and the standard deviation of the smoothed discharge times (common input).


Assuntos
Contração Isométrica , Músculo Esquelético , Masculino , Adulto Jovem , Humanos , Músculo Esquelético/fisiologia , Eletromiografia , Contração Isométrica/fisiologia , Extremidade Inferior , , Contração Muscular/fisiologia
8.
Sports (Basel) ; 11(8)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37624139

RESUMO

Exercises that improve muscle activation are essential for maintaining spinal stability and preventing low back pain. The purpose of this study was to compare the effects of abdominal hollowing and bracing on the activation of the core muscles in CrossFit® participants using ultrasound and electromyography (EMG). Twenty-four healthy adults aged 21 to 42 years old with at least two years of CrossFit® experience performed three core stability exercises (plank, side plank, bridge) with abdominal hollowing and bracing. We measured the ultrasound relative thickness of the local core muscles (transversus abdominis, internal oblique, and lumbar multifidus), and the EMG percentage of maximal voluntary contraction (MVC) of the global core muscles (rectus abdominis, external oblique, and iliocostalis lumborum). Analysis of variance tests showed that the relative thickness of the local core muscles was greater (p = 0.016) during hollowing (range from 26.8 ± 5.33 to 88.4 ± 11.9% of rest) than bracing (range from 15.9 ± 3.54 to 61.2 ± 15.9% of rest), while the EMG of the global muscles was greater (p = 0.001) in bracing (range from 24.4 ± 7.30 to 72.5 ± 9.17% of MVC) than hollowing (range from 16.4 ± 3.70 to 56.6 ± 7.65% of MVC). These results indicate that the recruitment of spinal muscles during popular exercises is achieved with both hollowing and bracing. Nevertheless, it appears that hollowing tends to recruit more of the local muscles, whilst bracing recruits more of the global muscles. The grading of the exercises varied between muscles and varied between maneuvers, especially for the surface abdominals and lumbar muscles. CrossFit® practitioners can choose to use either hollowing or bracing to activate their core muscles more selectively or more appropriately, depending on the goal and purpose of the exercise.

9.
J Funct Morphol Kinesiol ; 8(3)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37606405

RESUMO

The transversus abdominis (TrA) is a core muscle that contributes to functional mobility and lumbar stability. This study aimed to compare the changes in TrA thickness during different Pilates exercises, and to identify the exercise that elicited the greatest TrA activation. Forty-four healthy women were divided into two groups: young (25-35 years old) and middle-aged (36-55 years old). TrA thickness was assessed by ultrasound while the participants performed five Pilates exercises: basic position, hundred, hip roll, side plank, and dead bug. A repeated measures analysis of variance revealed that the dead bug exercise induced a significantly higher increase in TrA thickness (relative to rest) than the other exercises (p < 0.05). The young group also showed a significantly higher overall TrA thickness than the middle-aged group (p < 0.05). The findings suggest that the dead bug exercise is the most effective for enhancing TrA activation among the Pilates exercises tested. The basic position and the hundred exercises can be used as warm-up exercises before performing more challenging exercises such as the hip roll, the side plank, and the dead bug. The sequence of exercises can be similar for both young and middle-aged women.

10.
J Sports Sci ; 41(5): 430-440, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37279300

RESUMO

The effects of a cooling strategy following repeated high-intensity running (RHIR) on soccer kicking performance in a hot environment (>30ºC) were investigated in youth soccer players. Fifteen academy under-17 players participated. In Experiment 1, players completed an all-out RHIR protocol (10×30 m, with 30s intervals). In Experiment 2 (cross-over design), participants performed this running protocol under two conditions: (1) following RHIR 5 minutes of cooling where ice packs were applied to the quadriceps/hamstrings, (2) a control condition involving passive resting. Perceptual measures [ratings of perceived exertion (RPE), pain and recovery], thigh temperature and kick-derived video three-dimensional kinematics (lower limb) and performance (ball speed and two-dimensional placement indices) were collected at baseline, post-exercise and intervention. In Experiment 1, RHIR led to small-to-large impairments (p < 0.03;d = -0.42--1.83) across perceptual, kinematic and performance measures. In experiment 2, RPE (p < 0.01; Kendall's W = 0.30) and mean radial error (p = 0.057; η2 = 0.234) increased only post-control. Significant small declines in ball speed were also observed post-control (p < 0.05; d = 0.35). Post-intervention foot centre-of-mass velocity was moderately faster in the cooling compared to control condition (p = 0.04; d = 0.60). In youth soccer players, a short cooling period was beneficial in counteracting declines in kicking performance, in particular ball placement, following intense running activity in the heat.


Assuntos
Desempenho Atlético , Corrida , Futebol , Adolescente , Humanos , Fenômenos Biomecânicos , Temperatura Alta , Estudos Cross-Over
11.
J Sports Sci Med ; 22(2): 245-253, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37293414

RESUMO

The aim of the study was to assess the influence of habitual training history on force steadiness and the discharge characteristics of motor units in tibialis anterior during submaximal isometric contractions. Fifteen athletes whose training emphasized alternating actions (11 runners and 4 cyclists) and fifteen athletes who relied on bilateral actions with leg muscles (7 volleyball players, 8 weight-lifters) performed 2 maximal voluntary contractions (MVC) with the dorsiflexors, and 3 steady contractions at 8 target forces (2.5%, 5%, 10%, 20%, 30%, 40%, 50% and 60% MVC). The discharge characteristics of motor units in tibialis anterior were recorded using high-density electromyography grids. The MVC force and the absolute (standard deviation) and normalized (coefficient of variation) amplitudes of the force fluctuations at all target forces were similar between groups. The coefficient of variation for force decreased progressively from 2.5% to 20% MVC force, then it plateaued until 60% MVC force. Mean discharge rate of the motor units in tibialis anterior was similar at all target forces between groups. The variability in discharge times (coefficient of variation for interspike interval) and the variability in neural drive (coefficient of variation of filtered cumulative spike train) was also similar for the two groups. These results indicate that athletes who have trained with either alternating or bilateral actions with leg muscles has similar effects on maximal force, force control, and variability in the independent and common synaptic input during a single-limb isometric task with the dorsiflexors.


Assuntos
Perna (Membro) , Músculo Esquelético , Humanos , Músculo Esquelético/fisiologia , Eletromiografia , Contração Isométrica/fisiologia , Exercício Físico
12.
J Sport Rehabil ; 32(7): 773-781, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37225173

RESUMO

CONTEXT: Bridge exercises are extensively used in trunk-strengthening programs. The aim of this study was to investigate the effect of bridging duration on lateral abdominal muscle thickness and gluteus maximus activation. DESIGN: Cross-sectional. METHODS: Twenty-five young males participated in this study. Transversus abdominal (TrA), external and internal oblique ultrasound thickness, gluteus maximus electromyographic activation, and sacral tilt angle were simultaneously measured for every second during 30-second bridging exercise. The contraction thickness ratio and root mean squared signal (normalized to maximum isometric contraction signal) during 6 exercise durations (from 0 to 5, 10, 15, 20, 25, and 30 s) were also calculated and compared using analysis of variance designs. RESULTS: TrA and internal oblique contraction thickness ratio and gluteus maximus root mean squared increased during the first 8 to 10 seconds and remained elevated until the end of the 30-second exercise (P < .05). External oblique contraction thickness ratio declined during exercise (P < .05). Five-second bridging showed less TrA thickness and anteroposterior and mediolateral sacral tilt angle and a lower anteroposterior tilt variability compared with bridges, which lasted more than 10 seconds (P < .05). CONCLUSIONS: Bridge exercises longer than 10 seconds may be better for promoting TrA recruitment than bridges of shorter duration. Clinicians and exercise specialists could adjust the duration of bridge exercise based on the aims of the exercise program.


Assuntos
Músculos Abdominais , Músculo Esquelético , Masculino , Humanos , Estudos Transversais , Eletromiografia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Músculos Abdominais/diagnóstico por imagem , Músculos Abdominais/fisiologia , Coxa da Perna/fisiologia , Terapia por Exercício , Contração Muscular
13.
Healthcare (Basel) ; 11(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36766927

RESUMO

The purpose of this study was to prospectively monitor and analyze injuries in Greek amateur male soccer players over one competitive season. One hundred and thirty male soccer players in a regional amateur league participated in this study. Injury data and exposure were collected from six teams during training and competition match over one season (2018/19). Injuries were collected weekly and were classified by setting, mechanism, severity, type, calendar distribution, period of injury occurrence, and anatomical location. A total of 103 injuries were recorded during the season, with an incident rate (IR) of 5.5 injuries/1000 h with 95% confidence intervals (CI) values of 4.45 (lower limit) and 6.09 (upper limit). Furthermore, IR was greater for the posterior thigh (IR 1.83/1000 h, 95% CI 1.21-2.44) and hip/groin complex (IR 1.45/1000 h, 95% CI 0.90-1.99) compared to other anatomical locations. Similarly, muscle injuries had greater IR (IR 3.61/1000 h, 95% CI 2.74-4.47) than other tissues. Amateur soccer players had a seven-fold greater chance of getting injured during games (IR 20.76/1000 h, 95% CI 15.28-26.24) rather than during training (IR 3.077/1000 h, 95% CI 2.16-3.80), while injury rates were higher towards the end of a session and peaked in October and February of the season. Based on these results, amateur soccer may benefit from injury prevention strategies incorporated into their regular training practice and focus on muscle injuries, especially in the posterior thigh and the hip/groin complex.

14.
J Sport Health Sci ; 12(3): 343-358, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35065297

RESUMO

BACKGROUND: For the past 30 years, the hamstring (H)-to-quadriceps (Q) (H:Q) torque ratio has been considered an important index of muscle strength imbalance around the knee joint. The purpose of this systematic review was to examine the value of H:Q torque ratio as an independent risk factor for hamstring and anterior cruciate ligament (ACL) injuries. METHODS: Database searches were performed to identify all relevant articles in PubMed, MEDLINE, Cochrane Library, and Scopus. Prospective studies evaluating the conventional (concentric H:Q), functional (eccentric H: concentric Q), and mixed (eccentric H at 30°/s: concentric Q at 240°/s) H:Q ratios as risk factors for occurrence of hamstring muscle strain or ACL injury were considered. Risk of bias was assessed using the Quality In Prognosis Studies tool. RESULTS: Eighteen included studies reported 585 hamstrings injuries in 2945 participants, and 5 studies documented 128 ACL injuries in 2772 participants. Best evidence synthesis analysis indicated that there is very limited evidence that H:Q strength ratio is an independent risk factor for hamstring and ACL injury, and this was not different between various ratio types. Methodological limitations and limited evidence for ACL injuries and some ratio types might have influenced these results. CONCLUSION: The H:Q ratio has limited value for the prediction of ACL and hamstring injuries. Monitoring strength imbalances along with other modifiable factors during the entire competitive season may provide a better understanding of the association between H:Q ratio and injury.


Assuntos
Lesões do Ligamento Cruzado Anterior , Músculos Isquiossurais , Traumatismos da Perna , Humanos , Ligamento Cruzado Anterior , Músculo Esquelético/fisiologia , Torque , Estudos Prospectivos
15.
Ultrasound Med Biol ; 49(2): 431-440, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36319531

RESUMO

The aim of this study was to examine the intra- and inter-muscular differences of the hamstring muscles using textural analysis of ultrasound (US) images, and the relationship between textural indicators with hamstring torque. Transverse US scans were obtained from 10 young males from four different measurement sites along the thigh of each individual hamstring muscle at rest. Maximum-knee-flexion isometric torque measurements were also obtained. Texture analysis was applied to US images, and five gray-level co-occurrence matrix (GLCM) features were quantified: entropy (ENT), angular second moment (ASM), inverse difference moment (IDM), contrast (CON) and correlation (COR). The intraclass correlation coefficients ranged from 0.77 to 0.99, and the standard error of measurement ranged from 0.06 to 10.05%, indicating high test-retest reliability. Analysis of the variance indicated significant differences between measurement sites and individual muscles, with the proximal measurement sites having greater values for ASM, IDM and COR and lower values for ENT and CON compared with the distal sites. Additionally, only the COR at the proximal measurement site exhibited a significant relationship (r = -0.66) with strength. The present study indicated significant differences among hamstrings and measurement locations with respect to the textural analysis and may provide a novel indicator of hamstring functional properties.


Assuntos
Músculos Isquiossurais , Masculino , Humanos , Músculos Isquiossurais/diagnóstico por imagem , Reprodutibilidade dos Testes , Ultrassonografia , Extremidade Inferior , Coxa da Perna/diagnóstico por imagem , Força Muscular
16.
BMC Sports Sci Med Rehabil ; 14(1): 166, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064431

RESUMO

Temporal biomechanical and physiological responses to physical activity vary between individual hamstrings components as well as between exercises, suggesting that hamstring muscles operate differently, and over different lengths, between tasks. Nevertheless, the force-length properties of these muscles have not been thoroughly investigated. The present review examines the factors influencing the hamstrings' force-length properties and relates them to in vivo function. A search in four databases was performed for studies that examined relations between muscle length and force, torque, activation, or moment arm of hamstring muscles. Evidence was collated in relation to force-length relationships at a sarcomere/fiber level and then moment arm-length, activation-length, and torque-joint angle relations. Five forward simulation models were also used to predict force-length and torque-length relations of hamstring muscles. The results show that, due to architectural differences alone, semitendinosus (ST) produces less peak force and has a flatter active (contractile) fiber force-length relation than both biceps femoris long head (BFlh) and semimembranosus (SM), however BFlh and SM contribute greater forces through much of the hip and knee joint ranges of motion. The hamstrings' maximum moment arms are greater at the hip than knee, so the muscles tend to act more as force producers at the hip but generate greater joint rotation and angular velocity at the knee for a given muscle shortening length and speed. However, SM moment arm is longer than SM and BFlh, partially alleviating its reduced force capacity but also reducing its otherwise substantial excursion potential. The current evidence, bound by the limitations of electromyography techniques, suggests that joint angle-dependent activation variations have minimal impact on force-length or torque-angle relations. During daily activities such as walking or sitting down, the hamstrings appear to operate on the ascending limbs of their force-length relations while knee flexion exercises performed with hip angles 45-90° promote more optimal force generation. Exercises requiring hip flexion at 45-120° and knee extension 45-0° (e.g. sprint running) may therefore evoke greater muscle forces and, speculatively, provide a more optimum adaptive stimulus. Finally, increases in resistance to stretch during hip flexion beyond 45° result mainly from SM and BFlh muscles.

17.
Res Sports Med ; : 1-14, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36120742

RESUMO

The objectives of the study were to examine the incident rate (IR), characteristics, and mechanisms of muscle injuries of 121 men amateur soccer players that voluntarily participated in this project. Sixty-five muscle injuries with an overall IR of 3.62/1000 h, 95% CI 2.7-4.5, were reported. The most frequently injured muscle groups were the hamstrings (IR 1.78/1000 h, 95% CI 1.1-2.3), followed by the adductors (IR 1.5/1000 h, 95% CI 0.93-2.06). Most muscle injuries were characterized as mild (IR 2.3/1000 h, 95% CI 1.53-2.92) or minimal (IR 1.28/1000 h, 95% CI 1.16-2.39. Higher incidence of injury sustained during matches (IR 14.09 injuries/1000 h, 95% CI 9.49-18.7), than in training (IR 1.88 injuries/1000 h, 95% CI 1.19-2.56). The most frequent injury mechanisms were high-speed running (84.4%) and change of direction (44.4%), for hamstring and adductors-related groin injuries, respectively. Players aged over 24 years had a 7-fold increased risk to sustain a hamstring injury but a lower risk to sustain an adductor-related groin injury. Injury prevention and rehabilitation management strategies may reduce muscle injury rates in amateur soccer.

18.
Med Sci Sports Exerc ; 54(8): 1278-1287, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35324535

RESUMO

PURPOSE: The aim of our study was to compare maximal force, force steadiness, and discharge characteristics of motor units in tibialis anterior during contractions with the dorsiflexors of the dominant and nondominant legs at low-to-moderate target forces and three ankle angles. METHODS: Twenty young adults performed maximal and submaximal isometric contractions (5%, 10%, 20%, 40%, and 60% of maximal voluntary contraction (MVC)) with the dorsiflexors of the dominant and nondominant legs at three ankle angles (75°, short length; 90°, intermediate length; 105°, long length). High-density EMG signals from the tibialis anterior muscle of each leg were recorded. RESULTS: Maximal force (average dominant, 182.9 ± 64.5 N; nondominant, 179.0 ± 58.8 N) and the fluctuations in force, quantified as absolute (SD) and normalized amplitudes (coefficient of variation (CoV)), were similar between the two legs across the three ankle angles (average CoV for dominant, 1.5% ± 1.0%; nondominant, 1.7% ± 1.3%). The CoV for force for both legs decreased from 5% to 20% MVC force, and then it plateaued at 40% and 60% MVC force. EMG amplitude, mean discharge rate of motor units, discharge variability (interspike interval), and the variability in neural drive (filtered cumulative spike train) were similar between the two legs across the submaximal contractions. CONCLUSIONS: MVC force and force steadiness were similar across ankle angles and target forces between the dominant and nondominant legs. The attributes that underlie the self-reported identification of a dominant leg were not associated with the force capacity or the control of force for the dorsiflexor muscles, at least during isometric contractions.


Assuntos
Perna (Membro) , Alta do Paciente , Tornozelo/fisiologia , Eletromiografia , Humanos , Contração Isométrica/fisiologia , Perna (Membro)/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Adulto Jovem
19.
J Funct Morphol Kinesiol ; 7(1)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35225902

RESUMO

Hamstring strains are a frequent injury in sports and are characterized by a high recurrence rate. The aim of this review was to examine the muscle and tendon architecture in individuals with hamstring injury. A systematic literature search in four databases yielded eleven studies on architecture following injury. Differences in the fascicle length (FL), pennation angle (PA) and muscle size measures (volume, thickness and physiological cross-sectional area) at rest were not significantly different between the previously injured limb and the contralateral limb (p > 0.05). There was moderate evidence that biceps femoris long head (BFlh) FL shortening was greater during contraction in the injured compared to the contralateral limb. The BFlh FL was smaller in athletes with a previous injury compared to uninjured individuals (p = 0.0015) but no differences in the FL and PA of other muscles as well as in the aponeurosis/tendon size were observed (p > 0.05). An examination of the FL of both leg muscles in individuals with a previous hamstring strain may be necessary before and after return to sport. Exercises that promote fascicle lengthening of both injured and uninjured leg muscles may be beneficial for athletes who recover from a hamstring injury.

20.
Eur J Sport Sci ; 22(4): 539-548, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33899692

RESUMO

The purpose of the study was to assess the influence of short, intermediate, and long muscle lengths on dorsiflexor force steadiness and the discharge characteristics of motor units in tibialis anterior during submaximal isometric contractions. Steady contractions were performed at 5 target forces (5, 10, 20, 40, and 60% maximal voluntary contraction, MVC) for 3 ankle angles (75°, 90°, and 105°). MVC force was less (p = 0.043) at the smallest joint angle compared with the other two angles. The absolute (standard deviation) and normalised amplitudes (coefficient of variation) of the force fluctuations were similar for all 3 ankle angles at each target force. The coefficient of variation for force decreased progressively from 5% to 20% MVC force and then it plateaued at 40% and 60% MVC force. At all target forces, the mean discharge rate (MDR) of the motor units at 75° was greater than at 90° (p = 0.006) and 105° (p = 0.034). Moreover, the MDR was similar for 5% and 10% MVC forces and then increased gradually until 60% MVC force (p < 0.005). The variability in discharge times (coefficient of variation for interspike interval) and variability in neural drive (coefficient of variation of filtered cumulative spike train) were similar at all ankle angles. Variability in neural drive had a greater influence on force steadiness than did the variability in discharge times. Changes in ankle-joint angle did not influence either the normalised amplitude force fluctuations during steady submaximal contractions or the underlying modulation of the discharge characteristics of motor units in tibialis anterior.


Assuntos
Contração Isométrica , Músculo Esquelético , Tornozelo/fisiologia , Articulação do Tornozelo/fisiologia , Eletromiografia , Humanos , Contração Isométrica/fisiologia , Fenômenos Mecânicos , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA