Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Chest ; 164(3): 670-681, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37003354

RESUMO

BACKGROUND: Chronic lung allograft dysfunction (CLAD) is the leading cause of death among lung transplant recipients. Eosinophils, effector cells of type 2 immunity, are implicated in the pathobiology of many lung diseases, and prior studies suggest their presence associates with acute rejection or CLAD after lung transplantation. RESEARCH QUESTION: Does histologic allograft injury or respiratory microbiology correlate with the presence of eosinophils in BAL fluid (BALF)? Does early posttransplant BALF eosinophilia associate with future CLAD development, including after adjustment for other known risk factors? STUDY DESIGN AND METHODS: We analyzed BALF cell count, microbiology, and biopsy data from a multicenter cohort of 531 lung recipients with 2,592 bronchoscopies over the first posttransplant year. Generalized estimating equation models were used to examine the correlation of allograft histology or BALF microbiology with the presence of BALF eosinophils. Multivariable Cox regression was used to determine the association between ≥ 1% BALF eosinophils in the first posttransplant year and definite CLAD. Expression of eosinophil-relevant genes was quantified in CLAD and transplant control tissues. RESULTS: The odds of BALF eosinophils being present was significantly higher at the time of acute rejection and nonrejection lung injury histologies and during pulmonary fungal detection. Early posttransplant ≥ 1% BALF eosinophils significantly and independently increased the risk for definite CLAD development (adjusted hazard ratio, 2.04; P = .009). Tissue expression of eotaxins, IL-13-related genes, and the epithelial-derived cytokines IL-33 and thymic stromal lymphoprotein were significantly increased in CLAD. INTERPRETATION: BALF eosinophilia was an independent predictor of future CLAD risk across a multicenter lung recipient cohort. Additionally, type 2 inflammatory signals were induced in established CLAD. These data underscore the need for mechanistic and clinical studies to clarify the role of type 2 pathway-specific interventions in CLAD prevention or treatment.


Assuntos
Eosinofilia , Transplante de Pulmão , Humanos , Líquido da Lavagem Broncoalveolar , Pulmão , Transplante Homólogo , Transplante de Pulmão/efeitos adversos , Aloenxertos , Eosinofilia/etiologia , Estudos Retrospectivos , Rejeição de Enxerto
2.
J Heart Lung Transplant ; 42(6): 741-749, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36941179

RESUMO

BACKGROUND: Chronic lung allograft dysfunction (CLAD) increases morbidity and mortality for lung transplant recipients. Club cell secretory protein (CCSP), produced by airway club cells, is reduced in the bronchoalveolar lavage fluid (BALF) of lung recipients with CLAD. We sought to understand the relationship between BALF CCSP and early posttransplant allograft injury and determine if early posttransplant BALF CCSP reductions indicate later CLAD risk. METHODS: We quantified CCSP and total protein in 1606 BALF samples collected over the first posttransplant year from 392 adult lung recipients at 5 centers. Generalized estimating equation models were used to examine the correlation of allograft histology or infection events with protein-normalized BALF CCSP. We performed multivariable Cox regression to determine the association between a time-dependent binary indicator of normalized BALF CCSP level below the median in the first posttransplant year and development of probable CLAD. RESULTS: Normalized BALF CCSP concentrations were 19% to 48% lower among samples corresponding to histological allograft injury as compared with healthy samples. Patients who experienced any occurrence of a normalized BALF CCSP level below the median over the first posttransplant year had a significant increase in probable CLAD risk independent of other factors previously linked to CLAD (adjusted hazard ratio 1.95; p = 0.035). CONCLUSIONS: We discovered a threshold for reduced BALF CCSP to discriminate future CLAD risk; supporting the utility of BALF CCSP as a tool for early posttransplant risk stratification. Additionally, our finding that low CCSP associates with future CLAD underscores a role for club cell injury in CLAD pathobiology.


Assuntos
Transplante de Pulmão , Adulto , Humanos , Transplante de Pulmão/efeitos adversos , Biomarcadores/metabolismo , Pulmão , Líquido da Lavagem Broncoalveolar , Aloenxertos , Estudos Retrospectivos
3.
Cell Death Discov ; 8(1): 64, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35169120

RESUMO

Diacetyl (DA) is an α-diketone that is used to flavor microwave popcorn, coffee, and e-cigarettes. Occupational exposure to high levels of DA causes impaired lung function and obstructive airway disease. Additionally, lower levels of DA exposure dampen host defenses in vitro. Understanding DA's impact on lung epithelium is important for delineating exposure risk on lung health. In this study, we assessed the impact of DA on normal human bronchial epithelial cell (NHBEC) morphology, transcriptional profiles, and susceptibility to SARS-CoV-2 infection. Transcriptomic analysis demonstrated cilia dysregulation, an increase in hypoxia and sterile inflammation associated pathways, and decreased expression of interferon-stimulated genes after DA exposure. Additionally, DA exposure resulted in cilia loss and increased hyaluronan production. After SARS-CoV-2 infection, both genomic and subgenomic SARS-CoV-2 RNA were increased in DA vapor- compared to vehicle-exposed NHBECs. This work suggests that transcriptomic and physiologic changes induced by DA vapor exposure damage cilia and increase host susceptibility to SARS-CoV-2.

4.
Transplant Direct ; 7(4): e685, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34549083

RESUMO

BACKGROUND: Acute perivascular rejection (AR) is common in lung recipients and increases the risk for chronic lung allograft dysfunction (CLAD). Hyaluronan (HA), an extracellular matrix constituent, accumulates in experimental AR and can act as an innate immune agonist, breaking tolerance and potentiating alloimmunity. We previously demonstrated HA accumulates in CLAD after human-lung transplantation. We sought to determine if HA accumulates in the bronchoalveolar lavage fluid (BALF) concurrent with AR in lung recipients. METHODS: The cohort consisted of 126 first adult lung recipients at 5 transplant centers with a total of 373 BALF samples collected within the first posttransplant year. All samples were paired with a lung biopsy from the same bronchoscopy. BALF HA (ng/mL) was quantified by ELISA and log-transformed for analysis. Linear-mixed effect models, adjusted for potential confounders, were used to estimate the association between BALF HA concentration and the presence of AR on biopsy. The association between early posttransplant BALF HA levels and the development of CLAD was explored utilizing tertiles of maximum BALF HA level observed within the first 6 months of transplant. RESULTS: In analyses adjusted for potential confounders, BALF HA concentration was significantly increased in association with AR (change in means on log-scale 0.31; 95% CI, 0.01-0.60; P = 0.044). When considered on the original scale (ng/mL), BALF HA concentrations were 1.36 times (36%) higher, on average, among samples with, versus without, AR. The cumulative incidence of CLAD was numerically higher in individuals in the highest tertiles of BALF HA level within the first 6 months after transplant, as compared with those in the lowest tertile; however, this difference was not statistically significant (P = 0.32). CONCLUSIONS: These results demonstrate accumulation of HA in clinical AR and suggest a mechanism by which innate and adaptive immune activation might interact in the development of AR and CLAD.

5.
Transplantation ; 103(11): 2264-2274, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31658231

RESUMO

BACKGROUND: Chronic pulmonary graft-versus-host disease (cpGVHD) after hematopoietic cell transplant (HCT) manifests as progressive airway and parenchymal lung fibrosis. On the basis of our prior data, mice that undergo allogeneic HCT with Tbet-knockout donors (AlloTbet) have increased lung Th17 cells and IL-17A and develop fibrosis resembling human cpGVHD. The role of IL-17A in posttransplant pulmonary fibrosis remains incompletely understood. We hypothesized that IL-17A is necessary for development of murine cpGVHD in this model. METHODS: AlloTbet mice received weekly intraperitoneal anti-IL-17A or IgG (200 µg/mouse) starting 2 weeks post-HCT and were sacrificed after week 5. Histologic airway and parenchymal fibrosis were semiquantitatively graded in a blinded fashion. Lung cells and proteins were measured by flow cytometry, ELISA, and multicytokine assays. RESULTS: Anti-IL-17A modestly decreased airway and parenchymal lung fibrosis, along with a striking reduction in pulmonary neutrophilia, IL-6, MIP-1α, MIP-1ß, CXCL1, and CXCL5 in AlloTbet mice. Additionally, anti-IL-17A decreased CCL2, inflammatory monocytes and macrophages, and Th17 cells. CONCLUSIONS: In the setting of murine AlloHCT with Tbet donors, IL-17A blockade decreases fibrotic features of cpGVHD. This may be mediated by the observed reduction in neutrophils or specific lung monocyte and macrophage populations or alternatively via a direct effect on fibroblasts. Collectively, our results further suggest that anti-IL-17A strategies could prove useful in preventing alloimmune-driven fibrotic lung diseases.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Interleucina-17/antagonistas & inibidores , Pulmão/imunologia , Fibrose Pulmonar/fisiopatologia , Animais , Quimiocina CCL2/sangue , Quimiocina CCL3/sangue , Quimiocina CCL4/sangue , Quimiocina CXCL1/sangue , Quimiocina CXCL5/sangue , Doença Crônica , Doença Enxerto-Hospedeiro/patologia , Inflamação , Interleucina-17/imunologia , Interleucina-6/sangue , Pulmão/fisiopatologia , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/citologia
6.
Toxicol Sci ; 169(2): 534-542, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30851105

RESUMO

2,3-Butanedione (DA), a component of artificial butter flavoring, is associated with the development of occupational bronchiolitis obliterans (BO), a disease of progressive airway fibrosis resulting in lung function decline. Neutrophilic airway inflammation is a consistent feature of BO across a range of clinical contexts and may contribute to disease pathogenesis. Therefore, we sought to determine the importance of the neutrophil chemotactic cytokine interleukin-8 (IL-8) in DA-induced lung disease using in vivo and in vitro model systems. First, we demonstrated that levels of Cinc-1, the rat homolog of IL-8, are increased in the lung fluid and tissue compartment in a rat model of DA-induced BO. Next, we demonstrated that DA increased IL-8 production by the pulmonary epithelial cell line NCI-H292 and by primary human airway epithelial cells grown under physiologically relevant conditions at an air-liquid interface. We then tested the hypothesis that DA-induced epithelial IL-8 protein occurs in an epidermal growth factor receptor (EGFR)-dependent manner. In these in vitro experiments we demonstrated that epithelial IL-8 protein is blocked by the EGFR tyrosine kinase inhibitor AG1478 and by inhibition of tumor necrosis factor-alpha converting enzyme using the small molecule inhibitor, TAPI-1. Finally, we demonstrated that DA-induced IL-8 is dependent upon ERK1/2 and Mitogen activated protein kinase kinase activation downstream of EGFR signaling using the small molecule inhibitors AG1478 and PD98059. Together these novel in vivo and in vitro observations support that EGFR-dependent IL-8 production occurs in DA-induced BO. Further studies are warranted to determine the importance of IL-8 in BO pathogenesis.


Assuntos
Bronquiolite Obliterante/induzido quimicamente , Diacetil/toxicidade , Receptores ErbB/fisiologia , Aromatizantes/toxicidade , Interleucina-8/biossíntese , Pulmão/efeitos dos fármacos , Animais , Células Epiteliais/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Pulmão/imunologia , Ratos
7.
J Clin Invest ; 129(2): 556-568, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30561386

RESUMO

Antibody-mediated rejection (AMR) is a principal cause of acute and chronic failure of lung allografts. However, mechanisms mediating this oftentimes fatal complication are poorly understood. Here, we show that Foxp3+ T cells formed aggregates in rejection-free human lung grafts and accumulated within induced bronchus-associated lymphoid tissue (BALT) of tolerant mouse lungs. Using a retransplantation model, we show that selective depletion of graft-resident Foxp3+ T lymphocytes resulted in the generation of donor-specific antibodies (DSA) and AMR, which was associated with complement deposition and destruction of airway epithelium. AMR was dependent on graft infiltration by B and T cells. Depletion of graft-resident Foxp3+ T lymphocytes resulted in prolonged interactions between B and CD4+ T cells within transplanted lungs, which was dependent on CXCR5-CXCL13. Blockade of CXCL13 as well as inhibition of the CD40 ligand and the ICOS ligand suppressed DSA production and prevented AMR. Thus, we have shown that regulatory Foxp3+ T cells residing within BALT of tolerant pulmonary allografts function to suppress B cell activation, a finding that challenges the prevailing view that regulation of humoral responses occurs peripherally. As pulmonary AMR is largely refractory to current immunosuppression, our findings provide a platform for developing therapies that target local immune responses.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Linfócitos B , Brônquios , Rejeição de Enxerto , Transplante de Pulmão , Ativação Linfocitária , Animais , Linfócitos B/imunologia , Linfócitos B/patologia , Brônquios/imunologia , Brônquios/patologia , Ligante de CD40/genética , Ligante de CD40/imunologia , Quimiocina CXCL13/genética , Quimiocina CXCL13/imunologia , Rejeição de Enxerto/genética , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Nus , Receptores CXCR5/genética , Receptores CXCR5/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia
8.
Am J Respir Cell Mol Biol ; 56(6): 784-795, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28248570

RESUMO

Bronchiolitis obliterans (BO) is an increasingly important lung disease characterized by fibroproliferative airway lesions and decrements in lung function. Occupational exposure to the artificial food flavoring ingredient diacetyl, commonly used to impart a buttery flavor to microwave popcorn, has been associated with BO development. In the occupational setting, diacetyl vapor is first encountered by the airway epithelium. To better understand the effects of diacetyl vapor on the airway epithelium, we used an unbiased proteomic approach to characterize both the apical and basolateral secretomes of air-liquid interface cultures of primary human airway epithelial cells from four unique donors after exposure to an occupationally relevant concentration (∼1,100 ppm) of diacetyl vapor or phosphate-buffered saline as a control on alternating days. Basolateral and apical supernatants collected 48 h after the third exposure were analyzed using one-dimensional liquid chromatography tandem mass spectrometry. Paired t tests adjusted for multiple comparisons were used to assess differential expression between diacetyl and phosphate-buffered saline exposure. Of the significantly differentially expressed proteins identified, 61 were unique to the apical secretome, 81 were unique to the basolateral secretome, and 11 were present in both. Pathway enrichment analysis using publicly available databases revealed that proteins associated with matrix remodeling, including degradation, assembly, and new matrix organization, were overrepresented in the data sets. Similarly, protein modifiers of epidermal growth factor receptor signaling were significantly altered. The ordered changes in protein expression suggest that the airway epithelial response to diacetyl may contribute to BO pathogenesis.


Assuntos
Diacetil/toxicidade , Células Epiteliais/metabolismo , Aromatizantes/toxicidade , Pneumopatias/metabolismo , Proteoma/metabolismo , Diferenciação Celular/efeitos dos fármacos , Receptores ErbB/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Humanos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pneumopatias/patologia , Proteômica , Transdução de Sinais/efeitos dos fármacos
9.
J Proteome Res ; 16(2): 538-549, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-27966365

RESUMO

Occupational exposures to the diketone flavoring agent, diacetyl, have been associated with bronchiolitis obliterans, a rare condition of airway fibrosis. Model studies in rodents have suggested that the airway epithelium is a major site of diacetyl toxicity, but the effects of diacetyl exposure upon the human airway epithelium are poorly characterized. Here we performed quantitative LC-MS/MS-based proteomics to study the effects of repeated diacetyl vapor exposures on 3D organotypic cultures of human primary tracheobronchial epithelial cells. Using a label-free approach, we quantified approximately 3400 proteins and 5700 phosphopeptides in cell lysates across four independent donors. Altered expression of proteins and phosphopeptides were suggestive of loss of cilia and increased squamous differentiation in diacetyl-exposed cells. These phenomena were confirmed by immunofluorescence staining of culture cross sections. Hyperphosphorylation and cross-linking of basal cell keratins were also observed in diacetyl-treated cells, and we used parallel reaction monitoring to confidently localize and quantify previously uncharacterized sites of phosphorylation in keratin 6. Collectively, these data identify numerous molecular changes in the epithelium that may be important to the pathogenesis of flavoring-induced bronchiolitis obliterans. More generally, this study highlights the utility of quantitative proteomics for the study of in vitro models of airway injury and disease.


Assuntos
Diacetil/toxicidade , Células Epiteliais/efeitos dos fármacos , Aromatizantes/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Proteoma/genética , Adolescente , Técnicas de Cultura de Células , Diferenciação Celular , Cílios/efeitos dos fármacos , Cílios/metabolismo , Cílios/ultraestrutura , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Ontologia Genética , Humanos , Queratina-6/química , Queratina-6/genética , Queratina-6/metabolismo , Masculino , Pessoa de Meia-Idade , Anotação de Sequência Molecular , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , Proteoma/metabolismo , Mucosa Respiratória/citologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Volatilização , Adulto Jovem
10.
PLoS One ; 10(2): e0118459, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25710175

RESUMO

Obliterative bronchiolitis (OB) is an irreversible lung disease characterized by progressive fibrosis in the small airways with eventual occlusion of the airway lumens. OB is most commonly associated with lung transplant rejection; however, OB has also been diagnosed in workers exposed to artificial butter flavoring (ABF) vapors. Research has been limited by the lack of an adequate animal model of OB, and as a result the mechanism(s) is unclear and there are no effective treatments for this condition. Exposure of rats to the ABF component, 2,3-pentanedione (PD) results in airway lesions that are histopathologically similar to those in human OB. We used this animal model to evaluate changes in gene expression in the distal bronchi of rats with PD-induced OB. Male Wistar Han rats were exposed to 200 ppm PD or air 6 h/d, 5 d/wk for 2-wks. Bronchial tissues were laser microdissected from serial sections of frozen lung. In exposed lungs, both fibrotic and non-fibrotic airways were collected. Following RNA extraction and microarray analysis, differential gene expression was evaluated. In non-fibrotic bronchi of exposed rats, 4683 genes were significantly altered relative to air-exposed controls with notable down-regulation of many inflammatory cytokines and chemokines. In contrast, in fibrotic bronchi, 3807 genes were significantly altered with a majority of genes being up-regulated in affected pathways. Tgf-ß2 and downstream genes implicated in fibrosis were significantly up-regulated in fibrotic lesions. Genes for collagens and extracellular matrix proteins were highly up-regulated. In addition, expression of genes for peptidases and peptidase inhibitors were significantly altered, indicative of the tissue remodeling that occurs during airway fibrosis. Our data provide new insights into the molecular mechanisms of OB. This new information is of potential significance with regard to future therapeutic targets for treatment.


Assuntos
Brônquios/metabolismo , Bronquiolite Obliterante/patologia , Regulação para Baixo/efeitos dos fármacos , Pentanonas/toxicidade , Regulação para Cima/efeitos dos fármacos , Animais , Brônquios/patologia , Bronquiolite Obliterante/induzido quimicamente , Bronquiolite Obliterante/genética , Modelos Animais de Doenças , Fibrose/patologia , Imuno-Histoquímica , Exposição por Inalação , Masculino , Análise de Componente Principal , RNA/isolamento & purificação , RNA/metabolismo , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta2/metabolismo
11.
Transpl Immunol ; 32(1): 51-60, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25446809

RESUMO

RATIONALE: Bone marrow transplant (BMT) recipients experience frequent and severe respiratory viral infections (RVIs). However, the immunological mechanisms predisposing to RVIs are uncertain. Therefore, we hypothesized that antiviral T cell immunity is impaired as a consequence of allogeneic BMT, independent of pharmacologic immunosuppression, and is responsible for increased susceptibility to RVI. METHODS: Bone marrow and splenocytes from C57BL/6(H2(b)) mice were transplanted into B10.BR(H2(k)) (Allo) or C57BL/6(H2(b)) (Syn) recipients. Five weeks after transplantation, recipient mice were inoculated intranasally with mouse parainfluenza virus type 1 (mPIV-1), commonly known as Sendai virus (SeV), and monitored for relevant immunological and disease endpoints. MAIN RESULTS: Severe and persistent airway inflammation, epithelial injury, and enhanced mortality are found after viral infection in Allo mice but not in control Syn and non-transplanted mice. In addition, viral clearance is delayed in Allo mice as evidenced by prolonged detection of viral transcripts at Day 15 post-inoculation (p.i.) but not in control mice. In concert with these events, we also detected decreased levels of total and virus-specific CD8(+) T cells, as well as increased T cellexpression of inhibitory receptor programmed death-1 (PD-1), in the lungs of Allo mice at Day 8 p.i. Adoptive transfer of CD8(+) T cells from non-transplanted mice recovered from SeV infection into Allo mice at Day 8 p.i. restored normal levels of viral clearance, epithelial repair, and lung inflammation. CONCLUSIONS: Taken together these results indicate that allogeneic BMT results in more severe RVI based on the failure to develop an appropriate pulmonary CD8(+) T cell response, providing an important potential mechanism to target in improving outcomes of RVI after BMT.


Assuntos
Transplante de Medula Óssea , Linfócitos T CD8-Positivos/imunologia , Imunidade Celular , Infecções Respiratórias/imunologia , Infecções por Respirovirus/imunologia , Vírus Sendai/imunologia , Transferência Adotiva , Aloenxertos , Animais , Linfócitos T CD8-Positivos/patologia , Linfócitos T CD8-Positivos/transplante , Masculino , Camundongos , Infecções Respiratórias/etiologia , Infecções Respiratórias/patologia , Infecções Respiratórias/terapia , Infecções por Respirovirus/etiologia , Infecções por Respirovirus/patologia , Infecções por Respirovirus/terapia
12.
Am J Respir Cell Mol Biol ; 51(6): 810-21, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24921973

RESUMO

Environmental exposures are a potential trigger of chronic pulmonary graft-versus-host disease (pGVHD) after successful recovery from hematopoietic cell transplant (HCT). We hypothesized that inhalations of LPS, a prototypic environmental stimulus, trigger pGVHD via increased pulmonary recruitment of donor-derived antigen-presenting cells (APCs) through the C-C motif ligand 2 (CCL2)-C-C motif receptor 2 (CCR2) chemokine axis. B10.BR(H2(k)) and C57BL/6(H2(b)) mice underwent allogeneic (Allo) or syngeneic (Syn) HCT with wild-type (WT) C57BL/6, CCL2(-/-), or CCR2(-/-) donors. After 4 weeks, recipient mice received daily inhaled LPS for 5 days and were killed at multiple time points. Allo mice exposed to repeated inhaled LPS developed prominent lymphocytic bronchiolitis, similar to human pGVHD. The increase in pulmonary T cells in Allo mice after LPS exposures was accompanied by increased CCL2, CCR2, and Type-1 T-helper cytokines as well as by monocytes and monocyte-derived dendritic cells (moDCs) compared with Syn and nontransplanted controls. Using CCL2(-/-) donors leads to a significant decrease in lung DCs but to only mildly reduced CD4 T cells. Using CCR2(-/-) donors significantly reduces lung DCs and moDCs but does not change T cells. CCL2 or CCR2 deficiency does not alter pGVHD pathology but increases airway hyperreactivity and IL-5 or IL-13 cytokines. Our results show that hematopoietic donor-derived CCL2 and CCR2 regulate recruitment of APCs to the Allo lung after LPS exposure. Although they do not alter pathologic pGVHD, their absence is associated with increased airway hyperreactivity and IL-5 and IL-13 cytokines. These results suggest that the APC changes that result from CCL2-CCR2 blockade may have unexpected effects on T cell differentiation and physiologic outcomes in HCT.


Assuntos
Quimiocina CCL2/fisiologia , Doença Enxerto-Hospedeiro/imunologia , Lipopolissacarídeos/farmacologia , Receptores CCR2/fisiologia , Animais , Diferenciação Celular/imunologia , Células Cultivadas , Técnicas de Cocultura , Células Dendríticas/imunologia , Doença Enxerto-Hospedeiro/metabolismo , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/imunologia , Interleucina-5/biossíntese , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia
13.
Am J Respir Cell Mol Biol ; 51(4): 568-74, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24816162

RESUMO

Diacetyl (DA), a component of artificial butter flavoring, has been linked to the development of bronchiolitis obliterans (BO), a disease of airway epithelial injury and airway fibrosis. The epidermal growth factor receptor ligand, amphiregulin (AREG), has been implicated in other types of epithelial injury and lung fibrosis. We investigated the effects of DA directly on the pulmonary epithelium, and we hypothesized that DA exposure would result in epithelial cell shedding of AREG. Consistent with this hypothesis, we demonstrate that DA increases AREG by the pulmonary epithelial cell line NCI-H292 and by multiple independent primary human airway epithelial donors grown under physiologically relevant conditions at the air-liquid interface. Furthermore, we demonstrate that AREG shedding occurs through a TNF-α-converting enzyme (TACE)-dependent mechanism via inhibition of TACE activity in epithelial cells using the small molecule inhibitor, TNF-α protease inhibitor-1, as well as TACE-specific small inhibitor RNA. Finally, we demonstrate supportive in vivo results showing increased AREG transcript and protein levels in the lungs of rodents with DA-induced BO. In summary, our novel in vitro and in vivo observations suggest that further study of AREG is warranted in the pathogenesis of DA-induced BO.


Assuntos
Bronquiolite Obliterante/induzido quimicamente , Diacetil/toxicidade , Família de Proteínas EGF/metabolismo , Células Epiteliais/efeitos dos fármacos , Aromatizantes/toxicidade , Mucosa Respiratória/efeitos dos fármacos , Proteínas ADAM/antagonistas & inibidores , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Proteína ADAM17 , Anfirregulina , Bronquiolite Obliterante/genética , Bronquiolite Obliterante/metabolismo , Linhagem Celular , Relação Dose-Resposta a Droga , Família de Proteínas EGF/genética , Inibidores Enzimáticos/farmacologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Interferência de RNA , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Fatores de Tempo , Transfecção , Regulação para Cima
14.
PLoS One ; 9(5): e97951, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24844383

RESUMO

BACKGROUND: Pulmonary GVHD (pGVHD) is an important complication of hematopoietic cell transplant (HCT) and is thought to be a consequence of the HCT conditioning regimen, allogeneic donor cells, and posttransplant lung exposures. We have previously demonstrated that serial inhaled lipopolysaccharide (LPS) exposures potentiate the development of pGVHD after murine allogeneic HCT. In the current study we hypothesized that allogeneic lymphocytes and environmental exposures alone, in the absence of a pre-conditioning regimen, would cause features of pGVHD and would lead to a different T cell expansion pattern compared to syngeneic cells. METHODS: Recipient Rag1-/- mice received a transfer of allogeneic (Allo) or syngeneic (Syn) spleen cells. After 1 week of immune reconstitution, mice received 5 daily inhaled LPS exposures and were sacrificed 72 hours after the last LPS exposure. Lung physiology, histology, and protein levels in bronchoalveolar lavage (BAL) were assessed. Lung cells were analyzed by flow cytometry. RESULTS: Both Allo and Syn mice that undergo LPS exposures (AlloLPS and SynLPS) have prominent lymphocytic inflammation in their lungs, resembling pGVHD pathology, not seen in LPS-unexposed or non-transplanted controls. Compared to SynLPS, however, AlloLPS have significantly increased levels of BAL protein and enhancement of airway hyperreactivity, consistent with more severe lung injury. This injury in AlloLPS mice is associated with an increase in CD8 T cells and effector CD4 T cells, as well as a decrease in regulatory to effector CD4 T cell ratio. Additionally, cytokine analysis is consistent with a preferential Th1 differentiation and upregulation of pulmonary CCL5 and granzyme B. CONCLUSIONS: Allogeneic lymphocyte transfer into lymphocyte-deficient mice, followed by LPS exposures, causes features of pGVHD and lung injury in the absence of a pre-conditioning HCT regimen. This lung disease associated with an expansion of allogeneic effector T cells provides a novel model to dissect mechanisms of pGVHD independent of conditioning.


Assuntos
Transferência Adotiva , Lipopolissacarídeos/imunologia , Lesão Pulmonar/etiologia , Lesão Pulmonar/terapia , Baço/citologia , Subpopulações de Linfócitos T/imunologia , Administração por Inalação , Animais , Quimiocina CCL5/metabolismo , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/patologia , Doença Enxerto-Hospedeiro/terapia , Granzimas/metabolismo , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Imunofenotipagem , Interferon gama/metabolismo , Lipopolissacarídeos/administração & dosagem , Lesão Pulmonar/patologia , Masculino , Camundongos , Camundongos Knockout , Células Mieloides/imunologia , Células Mieloides/metabolismo , Subpopulações de Linfócitos T/metabolismo , Transplante Homólogo
15.
Am J Respir Cell Mol Biol ; 46(5): 592-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22162905

RESUMO

Chemokines and chemokine receptors have been implicated in the pathogenesis of bronchiolitis. CXCR3 ligands (CXCL10, CXCL9, and CXCL11) were elevated in patients with bronchiolitis obliterans syndrome (BOS) and chronic allorejection. Studies also suggested that blockage of CXCR3 or its ligands changed the outcome of T-cell recruitment and airway obliteration. We wanted to determine the role of the chemokine CXCL10 in the pathogenesis of bronchiolitis and BOS. In this study, we found that CXCL10 mRNA levels were significantly increased in patients with BOS. We generated transgenic mice expressing a mouse CXCL10 cDNA under control of the rat CC10 promoter. Six-month-old CC10-CXCL10 transgenic mice developed bronchiolitis characterized by airway epithelial hyperplasia and developed peribronchiolar and perivascular lymphocyte infiltration. The airway hyperplasia and T-cell inflammation were dependent on the presence of CXCR3. Therefore, long-term exposure of the chemokine CXCL10 in the lung causes bronchiolitis-like inflammation in mice.


Assuntos
Bronquiolite/fisiopatologia , Quimiocina CXCL10/fisiologia , Animais , Sequência de Bases , Líquido da Lavagem Broncoalveolar , Quimiocina CXCL10/genética , Primers do DNA , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase , RNA Mensageiro/genética
16.
J Heart Lung Transplant ; 30(6): 717-25, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21444213

RESUMO

BACKGROUND: Pulmonary graft-versus-host disease (GVHD) after hematopoietic cell transplant (HCT) and allograft rejection after lung transplant are parallel immunologic processes that lead to significant morbidity and mortality. Our murine model of pulmonary GVHD after inhaled lipopolysaccharide (LPS) suggests that innate immune activation potentiates pulmonary transplant-related alloimmunity. We hypothesized that the chemokine (C-X-C motif) receptor 3 (CXCR3) receptor is necessary for the development of LPS-induced pulmonary GVHD. METHODS: Recipient mice underwent allogeneic or syngeneic HCT, followed by inhaled LPS. CXCR3 inhibition was performed by using CXCR3-knockout donors or by systemic anti-CXCR3 antibody blockade. Pulmonary histopathology, cellular sub-populations, cytokine proteins, and transcripts were analyzed. RESULTS: Compared with the lungs of LPS-unexposed and syngeneic controls, lungs of LPS-exposed allogeneic HCT mice demonstrated prominent lymphocytic peri-vascular and peri-bronchiolar infiltrates. This pathology was associated with increased CD4(+) and CD8(+) T cells as well as an increase in CXCR3 expression on T cells, a 2-fold upregulation of CXCR3 transcript, and a 4-fold increase in its ligand CXCL10/Interferon gamma-induced protein 10 kDa (IP-10). CXCR3 inhibition using gene-knockout strategy or antibody blockade did not change the severity of pulmonary pathology, with a mean pathology score of 6.5 for sufficient vs 6.5 for knockout (p = 1.00) and a mean score of 6.8 for antibody blockade vs 7.4 for control (p = 0.46). CXCR3 inhibition did not prevent CD3 infiltration or prevent production of interleukin-12p40 or significantly change other Th1, Th2, or Th17 cytokines in the lung. CONCLUSIONS: In the setting of allogeneic HCT, innate immune activation by LPS potentiates pulmonary GVHD through CXCR3-independent mechanisms. Clinical strategies focused on inhibition of CXCR3 may prove insufficient to ameliorate transplant-related lung disease.


Assuntos
Doença Enxerto-Hospedeiro/patologia , Imunidade Inata/imunologia , Pneumopatias/patologia , Transplante de Pulmão/imunologia , Receptores CXCR3/fisiologia , Animais , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro/induzido quimicamente , Transplante de Células-Tronco Hematopoéticas , Lipopolissacarídeos , Pneumopatias/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T/imunologia , Transplante Homólogo
17.
Transpl Immunol ; 24(2): 83-93, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21070856

RESUMO

Respiratory viral infections cause significant morbidity and increase the risk for chronic pulmonary graft-versus-host disease (GVHD) after hematopoietic cell transplantation (HCT). Our overall hypothesis is that local innate immune activation potentiates adaptive alloimmunity. In this study, we hypothesized that a viral pathogen-associated molecular pattern (PAMP) alone can potentiate pulmonary GVHD after allogeneic HCT. We, therefore, examined the effect of pulmonary exposure to polyinosinic:polycytidylic acid (poly I:C), a viral mimetic that activates innate immunity, in an established murine HCT model. Poly I:C-induced a marked pulmonary T cell response in allogeneic HCT mice as compared to syngeneic HCT, with increased CD4+ cells in the lung fluid and tissue. This lymphocytic inflammation persisted at 2 weeks post poly I:C exposure in allogeneic mice and was associated with CD3+ cell infiltration into the bronchiolar epithelium and features of epithelial injury. In vitro, poly I:C enhanced allospecific proliferation in a mixed lymphocyte reaction. In vivo, poly I:C exposure was associated with an early increase in pulmonary monocyte recruitment and activation as well as a decrease in CD4+FOXP3+ regulatory T cells in allogeneic mice as compared to syngeneic. In contrast, intrapulmonary poly I:C did not alter the extent of systemic GVHD in either syngeneic or allogeneic mice. Collectively, our results suggest that local activation of pulmonary innate immunity by a viral molecular pattern represents a novel pathway that contributes to pulmonary GVHD after allogeneic HCT, through a mechanism that includes increased recruitment and maturation of intrapulmonary monocytes.


Assuntos
Doença Enxerto-Hospedeiro/imunologia , Transplante de Células-Tronco Hematopoéticas , Imunidade Inata , Pneumopatias/imunologia , Pulmão/imunologia , Monócitos/imunologia , Poli I-C/imunologia , Imunidade Adaptativa , Animais , Complexo CD3 , Linfócitos T CD4-Positivos/imunologia , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Monócitos Matadores Ativados/imunologia , Mucosa Respiratória/imunologia , Infecções Respiratórias/virologia , Linfócitos T Reguladores/imunologia , Transplante Homólogo
18.
J Am Coll Cardiol ; 50(23): 2243-8, 2007 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-18061073

RESUMO

OBJECTIVES: Our objective was to develop and assess a novel endogenous progenitor cell (EPC) assay based on aldehyde dehydrogenase (ALDH) activity, and to define the relationship of ALDH-bright (ALDH(br)) cells with previously defined EPCs, patient age, and extent of coronary artery disease. BACKGROUND: Accurate assessment of circulating EPCs is of significant interest, yet current assays have limitations. Progenitor cells display high levels of ALDH activity. An assay based on ALDH activity may offer a simple means for enumerating EPCs. METHODS: We simultaneously determined the numbers of EPCs based on ALDH activity and cell surface expression of CD133, CD34, and vascular endothelial growth factor receptor-2 in 110 patients undergoing cardiac catheterization. We assessed the reproducibility of these estimates, correlation among EPC assays, and the association of ALDH(br) numbers with age and disease severity. RESULTS: Aldehyde dehydrogenase-bright cells were easily identified in nonmobilized peripheral blood with median and mean frequencies of 0.041% and 0.074%, respectively. Aldehyde dehydrogenase-bright cells expressed CD34 or CD133 cell surface markers (57.0% and 27.1%, respectively), correlated closely with CD133+CD34+ cells (r = 0.72; p < 0.001), and differentiated into endothelial cells with greater efficiency than CD133+CD34+ cells. Aldehyde dehydrogenase-bright cell numbers were inversely associated with patient age and coronary disease severity. CONCLUSIONS: Aldehyde dehydrogenase activity represents a novel simplified method for quantifying EPCs. The correlation of ALDH(br) cells with clinical factors and outcomes warrants further study.


Assuntos
Aldeído Desidrogenase/metabolismo , Contagem de Células/métodos , Doença da Artéria Coronariana/enzimologia , Leucócitos Mononucleares/enzimologia , Células-Tronco/enzimologia , Antígeno AC133 , Fatores Etários , Idoso , Antígenos CD/metabolismo , Antígenos CD34/metabolismo , Cateterismo Cardíaco , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/patologia , Feminino , Glicoproteínas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Peptídeos/metabolismo , Reprodutibilidade dos Testes , Índice de Gravidade de Doença , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
19.
Mol Endocrinol ; 18(11): 2727-39, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15272055

RESUMO

Diverse extracellular stimuli activate the ERK1/2 MAPK cascade by transactivating epidermal growth factor (EGF) receptors. Here, we have examined the role of EGF receptors in IGF-I-stimulated ERK1/2 activation in several cultured cell lines. In human embryonic kidney 293 cells, IGF-I triggered proteolysis of heparin binding (HB)-EGF, increased tyrosine autophosphorylation of EGF receptors, stimulated EGF receptor inhibitor (AG1478)-sensitive ERK1/2 phosphorylation, and promoted EGF receptor endocytosis. In a mixed culture system that employed IGF-I receptor null murine embryo fibroblasts (MEFs) (R(-) cells) to detect paracrine signals produced by MEFs expressing the human IGF-I receptor (R(+) cells), stimulation of R(+) cells provoked rapid activation of green fluorescent protein-tagged ERK2 in cocultured R(-) cells. The R(-) cell response was abolished by either the broad-spectrum matrix metalloprotease inhibitor batimastat or by AG1478, indicating that it resulted from the proteolytic generation of an EGF receptor ligand from adjacent R(+) cells. These data suggest that the paracrine production of EGF receptor ligands leading to EGF receptor transactivation is a general property of IGF-I receptor signaling. In contrast, the contribution of transactivated EGF receptors to IGF-I-stimulated downstream events, such as ERK1/2 activation, varies in a cell type-dependent manner.


Assuntos
Receptores ErbB/fisiologia , Fator de Crescimento Insulin-Like I/fisiologia , Comunicação Parácrina , Fenilalanina/análogos & derivados , Animais , Linhagem Celular , Chlorocebus aethiops , Endocitose/fisiologia , Receptores ErbB/análise , Receptores ErbB/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/farmacologia , Metaloendopeptidases/antagonistas & inibidores , Camundongos , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fenilalanina/farmacologia , Fosforilação/efeitos dos fármacos , Quinazolinas , Ratos , Receptores de Somatomedina/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologia , Tiofenos/farmacologia , Tirosina/metabolismo , Tirfostinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA