Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Biotechnol Prog ; 35(4): e2824, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31017345

RESUMO

Single-use technologies, in particular disposable bioreactor bags, have become integral within the biopharmaceutical community. However, safety concerns arose upon the identification of toxic leachable compounds derived from the plastic materials. Although the leachable bis(2,4-di-tert-butylphenyl)-phosphate (bDtBPP) has been previously shown to inhibit CHO cell growth, it is critical to determine if other compounds like this are still present in subsequent generations of films for industrial application. This study compares the performance of CHO cells, CHO-K1, and CHO-DP12, cultured in media conditioned in an older single-use bioreactor (SUB) film (F-1) and a newer generation film (F-2) from the same vendor. CHO cells cultured in media conditioned for 7 days in the F-1 film demonstrated significantly reduced growth and antibody productivity profiles when compared to controls and media conditioned for the same time period in the newer F-2 film. Proteomic profiling of CHO cells cultured in the F-1 conditioned media identified differentially expressed proteins involved in oxidative stress response as well as compromised ATP synthesis. These potentially metabolically compromised cells exhibited reduced oxidative phosphorylation activity as well as lower glycolytic metabolism, characteristic of slower growing cells. Nonvolatile and metal leachables analysis of film extracts by LC-MS revealed a reduction in the abundance of the analyzed leachates from F-2 films when compared to F-1 films including bDtBPP, potentially explaining improved CHO cell growth in F-2 conditioned media. Furthermore, in vitro endocrine disruptor testing of the known leachable revealed this molecule to possess the potential to act as an androgen antagonist. This study demonstrates an improvement in the materials composition used in modern generations of SUBs for safe application in the bioprocess.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células , Meios de Cultivo Condicionados/química , Animais , Células CHO , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Cromatografia Líquida , Cricetinae , Cricetulus , Proteômica , Espectrometria de Massas em Tandem
2.
Biotechnol J ; 13(3): e1700299, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28976632

RESUMO

Genetic engineering of mammalian cells is of interest as a means to boost bio-therapeutic protein yield. X-linked inhibitor of apoptosis (XIAP) overexpression has previously been shown to enhance CHO cell growth and prolong culture longevity while additionally boosting productivity. The authors confirmed this across a range of recombinant products (SEAP, EPO, and IgG). However, stable overexpression of an engineering transgene competes for the cells translational machinery potentially compromising product titre. MicroRNAs are attractive genetic engineering candidates given their non-coding nature and ability to regulate multiple genes simultaneously, thereby relieving the translational burden associated with stable overexpression of a protein-encoding gene. The large number of potential targets of a single miRNA, falsely predicted in silico, presents difficulties in identifying those that could be useful engineering tools. The authors explored the identification of direct miRNA regulators of the pro-survival endogenous XIAP gene in CHO-K1 cells by using a miR-CATCH protocol. A biotin-tagged antisense DNA oligonucleotide for XIAP mRNA is designed and used to pull down and capture bound miRNAs. Two miRNAs are chosen out of the 14 miRNAs identified for further validation, miR-124-3p and miR-19b-3p. Transient transfection of mimics for both results in the diminished translation of endogenous CHO XIAP protein whereas their inhibition increases XIAP protein levels. A 3'UTR reporter assay confirms miR-124-3p to be a bona fide regulator of XIAP in CHO-K1 cells. This method demonstrates a useful approach to finding miRNA candidates for CHO cell engineering without competing for the cellular translational machinery.


Assuntos
Células CHO , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Regiões 3' não Traduzidas/genética , Animais , Proliferação de Células/genética , Cricetinae , Cricetulus , Regulação da Expressão Gênica/genética , Humanos , MicroRNAs/genética , Oligonucleotídeos Antissenso/genética , Transfecção
3.
Methods Mol Biol ; 1603: 143-152, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28493128

RESUMO

Cell line development aims to generate and select clones with desirable characteristics. One of the most important parameters for biopharmaceutical cell selection is cell-specific productivity (Qp) or the quantity of product produced per cell per day. Fluorescence-activated cell sorting (FACS) is a powerful, high-throughput technique that facilitates multiparametric characterization and isolation of individual cell clones from heterogeneous populations. Here, we describe a FACS-based method for section of high-producing CHO cell clones.


Assuntos
Separação Celular/métodos , Citometria de Fluxo/métodos , Coloração e Rotulagem/métodos , Animais , Células CHO , Células Clonais , Cricetinae , Cricetulus
4.
Metab Eng ; 41: 11-22, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28188893

RESUMO

Recent sequencing of the Chinese hamster ovary (CHO) cell and Chinese hamster genomes has dramatically advanced our ability to understand the biology of these mammalian cell factories. In this study, we focus on the powerhouse of the CHO cell, the mitochondrion. Utilizing a high-resolution next generation sequencing approach we sequenced the Chinese hamster mitochondrial genome for the first time and surveyed the mutational landscape of CHO cell mitochondrial DNA (mtDNA). Depths of coverage ranging from ~3,319X to 8,056X enabled accurate identification of low frequency mutations (>1%), revealing that mtDNA heteroplasmy is widespread in CHO cells. A total of 197 variants at 130 individual nucleotide positions were identified across a panel of 22 cell lines with 81% of variants occurring at an allele frequency of between 1% and 99%. 89% of the heteroplasmic mutations identified were cell line specific with the majority of shared heteroplasmic SNPs and INDELs detected in clones from 2 cell line development projects originating from the same host cell line. The frequency of common predicted loss of function mutations varied significantly amongst the clones indicating that heteroplasmic mtDNA variation could lead to a continuous range of phenotypes and play a role in cell to cell, production run to production run and indeed clone to clone variation in CHO cell metabolism. Experiments that integrate mtDNA sequencing with metabolic flux analysis and metabolomics have the potential to improve cell line selection and enhance CHO cell metabolic phenotypes for biopharmaceutical manufacturing through rational mitochondrial genome engineering.


Assuntos
Alelos , Frequência do Gene , Genoma Mitocondrial , Sequenciamento de Nucleotídeos em Larga Escala , Mutação INDEL , Polimorfismo de Nucleotídeo Único , Animais , Células CHO , Cricetinae , Cricetulus
5.
Biotechnol Prog ; 32(6): 1547-1558, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27557043

RESUMO

The biopharmaceutical industry has invested considerably in the implementation of single-use disposable bioreactors in place of or in addition to their stainless steel-counterparts. This new wave of construction materials for disposable bioprocess containers encompass a plethora of uncharacterized secondary compounds that, when in contact with the culture media, can leach, contaminating the bioprocess. One such cytotoxic leachable already receiving attention is bis(2,4-di-tert-butylphenyl)-phosphate (bDtBPP), a breakdown product of the secondary antioxidant Irgafos 168 in polyethylene-film based bags. This compound has been demonstrated to inhibit cell growth at concentrations ranging from 0.12 to 0.73 mg/L across an array of cell lines. Here we demonstrate that a further two CHO cell lines exhibit sensitivity to bDtBPP exposure at concentrations lower than that previously reported (0.035-0.1 mg/L). Furthermore, these inhibitory concentrations reflect bDtBPP levels found to leach early into the bioprocess, exposing reactor inoculums to serious risk. Quantitative label-free LC-MS/MS revealed that irrespective of cell line or concentration of bDtBPP, 8 proteins were found to be commonly differentially expressed in response to exposure to the compound highlighting biological processes related to cellular stress. Although the glycoprofile of the recombinant antibody remains primarily unchanged, we demonstrate that this compound when spiked at meaningful concentrations 72 h into culture considerably reduces the maximum cell density achieved. Studies like this reinforce the requirement for the complete characterization of all potential leachable compounds from disposable materials to assess their risk not only to the patient but also to the production pipeline itself. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1547-1558, 2016.


Assuntos
Organofosfatos/farmacologia , Animais , Reatores Biológicos , Células CHO , Contagem de Células , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cricetulus , Relação Dose-Resposta a Droga , Imunoglobulina G/biossíntese , Organofosfatos/química , Organofosfatos/isolamento & purificação , Aço Inoxidável/química , Relação Estrutura-Atividade
6.
Biotechnol J ; 10(7): 1029-40, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26097147

RESUMO

microRNA engineering of CHO cells has already proved successful in enhancing various industrially relevant phenotypes and producing various recombinant products. A single miRNA's ability to interact with multiple mRNA targets allows their regulatory capacity to extend to processes such as cellular metabolism. Various metabolic states have previously been associated with particular CHO cell phenotypes such as glycolytic or oxidative metabolism accommodating growth and productivity, respectively. miR-23 has previously been demonstrated to play a role in glutamate metabolism resulting in enhanced oxidative phosphorylation through the TCA cycle. Re-programming cellular bioenergetics through miR-23 could tip the balance, forcing mammalian production cells to be more productive by favoring metabolic channelling into oxidative metabolism. CHO clones depleted of miR-23 using a miR-sponge decoy demonstrated an average ∼three-fold enhanced specific productivity with no impact on cell growth. Using a cell respirometer, mitochondrial activity was found to be enhanced by ∼30% at Complex I and II of the electron transport system. Additionally, label-free proteomic analysis uncovered various potential novel targets of miR-23 including LE1 and IDH1, both implicated in oxidative metabolism and mitochondrial activity. These results demonstrate miRNA-based engineering as a route to re-programming cellular metabolism resulting in increased productivity, without affecting growth.


Assuntos
Fosfatase Alcalina/genética , Células CHO , Engenharia Celular , MicroRNAs/metabolismo , Proteômica , Fosfatase Alcalina/metabolismo , Animais , Proliferação de Células/genética , Cricetinae , Cricetulus , Ácido Glutâmico/metabolismo , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , MicroRNAs/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fenótipo , Estabilidade de RNA/genética , RNA Mensageiro/genética
7.
Biotechnol J ; 10(7): 950-66, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26058739

RESUMO

High throughput, cost effective next generation sequencing (NGS) has enabled the publication of genome sequences for Cricetulus griseus and several Chinese hamster ovary (CHO) cell lines. RNA-Seq, the utilization of NGS technology to study the transcriptome, is expanding our understanding of the CHO cell biological system in areas ranging from the analysis of transcription start sites to the discovery of small noncoding RNAs. The analysis of RNA-Seq data, often comprised of several million short reads, presents a considerable challenge. If the CHO cell biology field is to fully exploit the potential of RNA-Seq, the development of robust data analysis pipelines is critical. In this manuscript, we outline bioinformatics approaches for the stages of a typical RNA-Seq expression profiling experiment including quality control, pre-processing, alignment and de novo transcriptome assembly. Algorithms for the analysis of mRNA and microRNA (miRNA) expression as well as methods for the detection of alternative splicing from RNA-Seq data are also presented. At this relatively early stage of Cricetulus griseus genome assembly and annotation, it is likely that a combination of isoform deconvolution and raw count based methods will provide the most complete picture of transcript expression patterns in CHO cell RNA-Seq experiments.


Assuntos
Células CHO , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/genética , Animais , Biologia Computacional , Cricetinae , Cricetulus , MicroRNAs/biossíntese , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Transcriptoma/genética
8.
Biotechnol Lett ; 37(4): 787-98, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25527440

RESUMO

The use of microRNAs (miRNAs) for improving the efficiency of recombinant protein production by CHO cells is gaining considerable interest for their ability to regulate entire molecular networks. Differential miRNA expression profiling and large-scale transient screening have been the prerequisite for the selection of miRNA candidates for stable manipulation, reported in CHO cells expressing a range of recombinant products. We selected a potent and well characterised tumour suppressor miRNA, miR-34a, as a high priority candidate for CHO cell engineering based on the conservation of both its sequence and function across species and cell type. Ectopic expression of miR-34a retained its functional conservation in CHO-SEAP cells by inhibiting growth by 90% in addition to decreasing the viable cell population by 30% when compared to controls. When the miR-34 family was stably depleted using a miRNA sponge decoy vector, the overall product yield was enhanced by ~2-fold in both fed-batch and small scale clonal batch cultures, despite having a negative impact on cell growth. These findings further strengthen the utility of miRNAs as engineering tools to modify and improve CHO cell performance.


Assuntos
Engenharia Celular/métodos , Expressão Gênica , MicroRNAs/biossíntese , MicroRNAs/genética , Animais , Células CHO , Proliferação de Células , Sobrevivência Celular , Cricetulus , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA