Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Global Biogeochem Cycles ; 35(10): e2021GB006985, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35865105

RESUMO

To better quantify the ocean's biological carbon pump, we resolved the diversity of sinking particles that transport carbon into the ocean's interior, their contribution to carbon export, and their attenuation with depth. Sinking particles collected in sediment trap gel layers from four distinct ocean ecosystems were imaged, measured, and classified. The size and identity of particles was used to model their contribution to particulate organic carbon (POC) flux. Measured POC fluxes were reasonably predicted by particle images. Nine particle types were identified, and most of the compositional variability was driven by the relative contribution of aggregates, long cylindrical fecal pellets, and salp fecal pellets. While particle composition varied across locations and seasons, the entire range of compositions was measured at a single well-observed location in the subarctic North Pacific over one month, across 500 m of depth. The magnitude of POC flux was not consistently associated with a dominant particle class, but particle classes did influence flux attenuation. Long fecal pellets attenuated most rapidly with depth whereas certain other classes attenuated little or not at all with depth. Small particles (<100 µm) consistently contributed ∼5% to total POC flux in samples with higher magnitude fluxes. The relative importance of these small particle classes (spherical mini pellets, short oval fecal pellets, and dense detritus) increased in low flux environments (up to 46% of total POC flux). Imaging approaches that resolve large variations in particle composition across ocean basins, depth, and time will help to better parameterize biological carbon pump models.

2.
J Environ Radioact ; 138: 390-401, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24629375

RESUMO

Depth profiles of (210)Po and (210)Pb activity and phytoplankton and zooplankton abundance were collected during two cruises along the Canadian time-series Line P in the Northeast Subarctic Pacific (ranging from 48o39 N to 50o00 N and 126o40 W to 145o00 W) in August 2010 and February 2011 to evaluate connections between the planktonic community and distributions of these radionuclides in the upper 500 m of the water column. Statistical analysis indicates that (210)Po is more effectively removed from the surface ocean when large (>0.1 mg ind(-1) dry wt) zooplankton dominate, and is less effectively scavenged when the picoplankton Synechococcus is present at high concentrations (>1 × 10(5) cells ml(-1)). While the zooplankton field data are consistent with previous lab studies and field observations, the phytoplankton results seem to conflict with recent evidence that small cells may contribute significantly to export in other oligotrophic regions. Differences in ecosystem mechanisms between the Subarctic Pacific and other oligotrophic systems that limit the contribution of small cells to sinking flux remain to be identified.


Assuntos
Biodiversidade , Radioisótopos de Chumbo/análise , Fitoplâncton/fisiologia , Polônio/análise , Monitoramento de Radiação , Zooplâncton/fisiologia , Animais , Geografia , Oceano Pacífico , Traçadores Radioativos , Estações do Ano
3.
J Environ Radioact ; 102(5): 479-89, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21055851

RESUMO

Particle-reactive, naturally occurring radionuclides are useful tracers of the sinking flux of organic matter from the surface to the deep ocean. Since the Joint Global Ocean Flux Study (JGOFS) began in 1987, the disequilibrium between (234)Th and its parent (238)U has become widely used as a technique to measure particle export fluxes from surface ocean waters. Another radionuclide pair, (210)Po and (210)Pb, can be used for the same purpose but has not been as widely adopted due to difficulty with accurately constraining the (210)Po/(210)Pb radiochemical balance in the ocean and because of the more time-consuming radiochemical procedures. Direct comparison of particle flux estimated in different ocean regions using these short-lived radionuclides is important in evaluating their utility and accuracy as tracers of particle flux. In this paper, we present paired (234)Th/(238)U and (210)Po/(210)Pb data from oligotrophic surface waters of the subtropical Northwest Atlantic and discuss their advantages and limitations. Vertical profiles of total and particle size-fractionated (210)Po and (234)Th activities, together with particulate organic carbon (POC) concentrations, were measured during three seasons at the Bermuda Atlantic Time-series Study (BATS) site. Both (210)Po and (234)Th reasonably predict sinking POC flux caught in sediment traps, and each tracer provides unique information about the magnitude and efficiency of the ocean's biological pump.


Assuntos
Carbono/análise , Monitoramento Ambiental/métodos , Compostos Orgânicos/análise , Material Particulado/análise , Radioisótopos/análise , Poluentes Químicos da Água/análise , Oceano Atlântico , Bermudas , Radioisótopos de Chumbo/análise , Tamanho da Partícula , Polônio/análise , Tório/análise , Fatores de Tempo , Urânio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA