Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 606(7914): 475-478, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35705818

RESUMO

Galaxy protoclusters, which will eventually grow into the massive clusters we see in the local Universe, are usually traced by locating overdensities of galaxies1. Large spectroscopic surveys of distant galaxies now exist, but their sensitivity depends mainly on a galaxy's star-formation activity and dust content rather than its mass. Tracers of massive protoclusters that do not rely on their galaxy constituents are therefore needed. Here we report observations of Lyman-α absorption in the spectra of a dense grid of background galaxies2,3, which we use to locate a substantial number of candidate protoclusters at redshifts 2.2 to 2.8 through their intergalactic gas. We find that the structures producing the most absorption, most of which were previously unknown, contain surprisingly few galaxies compared with the dark-matter content of their analogues in cosmological simulations4,5. Nearly all of the structures are expected to be protoclusters, and we infer that half of their expected galaxy members are missing from our survey because they are unusually dim at rest-frame ultraviolet wavelengths. We attribute this to an unexpectedly strong and early influence of the protocluster environment6,7 on the evolution of these galaxies that reduced their star formation or increased their dust content.

2.
Nature ; 553(7689): 473-476, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29211709

RESUMO

Quasars are the most luminous non-transient objects known and as a result they enable studies of the Universe at the earliest cosmic epochs. Despite extensive efforts, however, the quasar ULAS J1120 + 0641 at redshift z = 7.09 has remained the only one known at z > 7 for more than half a decade. Here we report observations of the quasar ULAS J134208.10 + 092838.61 (hereafter J1342 + 0928) at redshift z = 7.54. This quasar has a bolometric luminosity of 4 × 1013 times the luminosity of the Sun and a black-hole mass of 8 × 108 solar masses. The existence of this supermassive black hole when the Universe was only 690 million years old-just five per cent of its current age-reinforces models of early black-hole growth that allow black holes with initial masses of more than about 104 solar masses or episodic hyper-Eddington accretion. We see strong evidence of absorption of the spectrum of the quasar redwards of the Lyman α emission line (the Gunn-Peterson damping wing), as would be expected if a significant amount (more than 10 per cent) of the hydrogen in the intergalactic medium surrounding J1342 + 0928 is neutral. We derive such a significant fraction of neutral hydrogen, although the exact fraction depends on the modelling. However, even in our most conservative analysis we find a fraction of more than 0.33 (0.11) at 68 per cent (95 per cent) probability, indicating that we are probing well within the reionization epoch of the Universe.

3.
Nature ; 489(7416): 406-8, 2012 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-22996554

RESUMO

Re-ionization of the intergalactic medium occurred in the early Universe at redshift z ≈ 6-11, following the formation of the first generation of stars. Those young galaxies (where the bulk of stars formed) at a cosmic age of less than about 500 million years (z ≲ 10) remain largely unexplored because they are at or beyond the sensitivity limits of existing large telescopes. Understanding the properties of these galaxies is critical to identifying the source of the radiation that re-ionized the intergalactic medium. Gravitational lensing by galaxy clusters allows the detection of high-redshift galaxies fainter than what otherwise could be found in the deepest images of the sky. Here we report multiband observations of the cluster MACS J1149+2223 that have revealed (with high probability) a gravitationally magnified galaxy from the early Universe, at a redshift of z = 9.6 ± 0.2 (that is, a cosmic age of 490 ± 15 million years, or 3.6 per cent of the age of the Universe). We estimate that it formed less than 200 million years after the Big Bang (at the 95 per cent confidence level), implying a formation redshift of ≲14. Given the small sky area that our observations cover, faint galaxies seem to be abundant at such a young cosmic age, suggesting that they may be the dominant source for the early re-ionization of the intergalactic medium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA