Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Rev Sci Instrum ; 94(3): 031101, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37012742

RESUMO

In this Review Article, we discuss a range of soft x-ray power diagnostics at inertial confinement fusion (ICF) and pulsed-power fusion facilities. This Review Article describes current hardware and analysis approaches and covers the following methods: x-ray diode arrays, bolometers, transmission grating spectrometers, and associated crystal spectrometers. These systems are fundamental for the diagnosis of ICF experiments, providing a wide range of critical parameters for the evaluation of fusion performance.

2.
Rev Sci Instrum ; 93(12): 123902, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36586918

RESUMO

This study investigates methods to optimize quasi-monochromatic, ∼10 ns long x-ray sources (XRS) for time-resolved x-ray diffraction measurements of phase transitions during dynamic laser compression measurements at the National Ignition Facility (NIF). To support this, we produce continuous and pulsed XRS by irradiating a Ge foil with NIF lasers to achieve an intensity of 2 × 1015 W/cm2, optimizing the laser-to-x-ray conversion efficiency. Our x-ray source is dominated by Ge He-α line emission. We discuss methods to optimize the source to maintain a uniform XRS for ∼10 ns, mitigating cold plasma and higher energy x-ray emission lines.

3.
Phys Rev Lett ; 129(19): 195002, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36399755

RESUMO

The application of an external 26 Tesla axial magnetic field to a D_{2} gas-filled capsule indirectly driven on the National Ignition Facility is observed to increase the ion temperature by 40% and the neutron yield by a factor of 3.2 in a hot spot with areal density and temperature approaching what is required for fusion ignition [1]. The improvements are determined from energy spectral measurements of the 2.45 MeV neutrons from the D(d,n)^{3}He reaction, and the compressed central core B field is estimated to be ∼4.9 kT using the 14.1 MeV secondary neutrons from the D(T,n)^{4}He reactions. The experiments use a 30 kV pulsed-power system to deliver a ∼3 µs current pulse to a solenoidal coil wrapped around a novel high-electrical-resistivity AuTa_{4} hohlraum. Radiation magnetohydrodynamic simulations are consistent with the experiment.

4.
Rev Sci Instrum ; 92(5): 053904, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243269

RESUMO

We present the results of experiments to produce a 10 ns-long, quasi-monochromatic x-ray source. This effort is needed to support time-resolved x-ray diffraction (XRDt) measurements of phase transitions during laser-driven dynamic compression experiments at the National Ignition Facility. To record XRDt of phase transitions as they occur, we use high-speed (∼1 ns) gated hybrid CMOS detectors, which record multiple frames of data over a timescale of a few to tens of ns. Consequently, to make effective use of these imagers, XRDt needs the x-ray source to be narrow in energy and uniform in time as long as the sensors are active. The x-ray source is produced by a laser irradiated Ge foil. Our results indicate that the x-ray source lasts during the whole duration of the main laser pulse. Both time-resolved and time-integrated spectral data indicate that the line emission is dominated by the He-α complex over higher energy emission lines. Time-integrated spectra agree well with a one-dimensional Cartesian simulation using HYDRA that predicts a conversion efficiency of 0.56% when the incident intensity is 2 × 1015 W/cm2 on a Ge backlighter.

5.
Rev Sci Instrum ; 92(4): 043543, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243465

RESUMO

Diagnosing plasma magnetization in inertial confinement fusion implosions is important for understanding how magnetic fields affect implosion dynamics and to assess plasma conditions in magnetized implosion experiments. Secondary deuterium-tritium (DT) reactions provide two diagnostic signatures to infer neutron-averaged magnetization. Magnetically confining fusion tritons from deuterium-deuterium (DD) reactions in the hot spot increases their path lengths and energy loss, leading to an increase in the secondary DT reaction yield. In addition, the distribution of magnetically confined DD-triton is anisotropic, and this drives anisotropy in the secondary DT neutron spectra along different lines of sight. Implosion parameter space as well as sensitivity to the applied B-field, fuel ρR, temperature, and hot-spot shape will be examined using Monte Carlo and 2D radiation-magnetohydrodynamic simulations.

6.
Rev Sci Instrum ; 92(3): 033505, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33820103

RESUMO

DANTE is a diagnostic used to measure the x-radiation drive produced by heating a high-Z cavity ("hohlraum") with high-powered laser beams. It records the spectrally and temporally resolved radiation flux at x-ray energies between 50 eV and 20 keV. Each sensor configuration on DANTE is composed of filters, mirrors, and x-ray diodes to define 18 different x-ray channels whose output is voltage as a function of time. The absolute flux is then determined from the photometric calibration of the sensor configuration and a spectral reconstructing algorithm. The reconstruction of the spectra vs time from the measured voltages and known response of each channel has presented challenges. We demonstrate a novel approach here for quantifying the error on the determined flux based on the channel sensor configuration and most commonly used reconstruction algorithm. In general, we find that the integrated spectral flux from a hohlraum can robustly be reconstructed (within ∼14%) using a traditional unfold approach with as few as ten channels due to the underlying assumption of a largely Planckian spectral intensity distribution.

7.
Phys Rev Lett ; 126(8): 085001, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33709744

RESUMO

In a plasma of sufficient size and density, photons emitted within the system have a probability of being reabsorbed and reemitted multiple times-a phenomenon known in astrophysics as resonant scattering. This effect alters the ratio of optically thick to optically thin lines, depending on the plasma geometry and viewing angle, and has significant implications for the spectra observed in a number of astrophysical scenarios, but has not previously been studied in a controlled laboratory plasma. We demonstrate the effect in the x-ray spectra emitted by cylindrical plasmas generated by high power laser irradiation, and the results confirm the geometrical interpretation of resonant scattering.

8.
Rev Sci Instrum ; 91(12): 123502, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33380006

RESUMO

Sentinel is a 16-channel, filtered x-ray diode array spectrometer that has been developed to measure ∼1 keV-20 keV x-ray emission generated by the National Ignition Facility (NIF) laser. Unlike the large, fixed-port versions of this diagnostic that currently exist on the NIF (known as Dante), Sentinel is a Diagnostic Instrument Manipulator compatible such that it can be fielded along the polar or equatorial lines-of-sight-an essential new capability for characterizing the often anisotropic x-ray emission from laser-driven sources. We present the diagnostic design along with preliminary diode calibrations and performance results. The novel, small-form-factor x-ray diode design allows for ≳5×-25× increased channel areal density over that of Dante, simultaneously enabling improved diagnostic robustness and fidelity of spectral reconstructions. While the Sentinel diagnostic is anticipated to improve line-of-sight spectral characterization of x-ray sources for a wide variety of programs on the NIF, the compact and portable design is also attractive to small- and mid-scale facilities with limited diagnostic real estate.

9.
Rev Sci Instrum ; 91(8): 083507, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32872957

RESUMO

Filtered diode array spectrometers are routinely employed to infer the temporal evolution of spectral power from x-ray sources, but uniquely extracting spectral content from a finite set of broad, spectrally overlapping channel spectral sensitivities is decidedly nontrivial in these under-determined systems. We present the use of genetic algorithms to reconstruct a probabilistic spectral intensity distribution and compare to the traditional approach most commonly found in the literature. Unlike many of the previously published models, spectral reconstructions from this approach are neither limited by basis functional forms nor do they require a priori spectral knowledge. While the original intent of such measurements was to diagnose the temporal evolution of spectral power from quasi-blackbody radiation sources-where the exact details of spectral content were not thought to be crucial-we demonstrate that this new technique can greatly enhance the utility of the diagnostic by providing more physical spectra and improved robustness to hardware configuration for even strongly non-Planckian distributions.

10.
Rev Sci Instrum ; 91(8): 086101, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32872967

RESUMO

Extended x-ray absorption fine structure (EXAFS) measurements require a bright and continuous x-ray source and a detection system with high spectral resolution to capture the modulations of the absorption coefficient above the material absorption edge. When performing EXAFS measurements under laser-driven dynamic compression, it is hence critical to optimize the backlighter x-ray emission. A series of experiments has been conducted at the OMEGA laser facility to characterize titanium (Z = 22), iron (Z = 26), germanium (Z = 32), molybdenum (Z = 42), silver (Z = 47), and gold (Z = 79) foil backlighters irradiated with 3 kJ-12 kJ of laser energy. The spectra have been recorded using a dual crystal spectrometer (DCS), a two-channel transmission spectrometer covering 11 keV-45 keV and 19 keV-90 keV energy bands. The DCS has been calibrated so that the spectral intensities can be compared between different campaigns.

11.
Rev Sci Instrum ; 90(8): 083302, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31472598

RESUMO

Calibrated diagnostics for energetic particle detection allow for the systematic study of charged particle sources. The Fujifilm BAS-TR imaging plate (IP) is a reusable phosphorescent detector for radiation applications such as x-ray and particle beam detection. The BAS-TR IP has been absolutely calibrated to many low-Z (low proton number) ions, and extending these calibrations to the mid-Z regime is beneficial for the study of laser-driven ion sources. The Texas Petawatt Laser was used to generate energetic ions from a 100 nm titanium foil, and charge states Ti10+ through Ti12+, ranging from 6 to 27 MeV, were analyzed for calibration. A plastic detector of CR-39 with evenly placed slots was mounted in front of the IP to count the number of ions that correspond with the IP levels of photo-stimulated luminescence (PSL). A response curve was fitted to the data, yielding a model of the PSL signal vs ion energy. Comparisons to other published response curves are also presented, illustrating the trend of PSL/nucleon decreasing with increasing ion mass.

12.
Rev Sci Instrum ; 90(1): 013702, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30709218

RESUMO

The Crystal Backlighter Imager (CBI) is a quasi-monochromatic, near-normal incidence, spherically bent crystal imager developed for the National Ignition Facility (NIF), which will allow inertial confinement fusion capsule implosions to be radiographed close to stagnation. This is not possible using the standard pinhole-based area-backlighter configuration, as the self-emission from the capsule hotspot overwhelms the backlighter signal in the final stages of the implosion. The CBI mitigates the broadband self-emission from the capsule hot spot by using the extremely narrow bandwidth inherent to near-normal-incidence Bragg diffraction. Implementing a backlighter system based on near-normal reflection in the NIF chamber presents unique challenges, requiring the CBI to adopt novel engineering and operational strategies. The CBI currently operates with an 11.6 keV backlighter, making it the highest energy radiography diagnostic based on spherically bent crystals to date. For a given velocity, Doppler shift is proportional to the emitted photon energy. At 11.6 keV, the ablation velocity of the backlighter plasma results in a Doppler shift that is significant compared to the bandwidth of the instrument and the width of the atomic line, requiring that the shift be measured to high accuracy and the optics aligned accordingly to compensate. Experiments will be presented that used the CBI itself to measure the backlighter Doppler shift to an accuracy of better than 1 eV. These experiments also measured the spatial resolution of CBI radiographs at 7.0 µm, close to theoretical predictions. Finally, results will be presented from an experiment in which the CBI radiographed a capsule implosion driven by a 1 MJ NIF laser pulse, demonstrating a significant (>100) improvement in the backlighter to self-emission ratio compared to the pinhole-based area-backlighter configuration.

13.
Sci Rep ; 8(1): 17538, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30510273

RESUMO

Intense lasers can accelerate protons in sufficient numbers and energy that the resulting beam can heat materials to exotic warm (10 s of eV temperature) states. Here we show with experimental data that a laser-driven proton beam focused onto a target heated it in a localized spot with size strongly dependent upon material and as small as 35 µm radius. Simulations indicate that cold stopping power values cannot model the intense proton beam transport in solid targets well enough to match the large differences observed. In the experiment a 74 J, 670 fs laser drove a focusing proton beam that transported through different thicknesses of solid Mylar, Al, Cu or Au, eventually heating a rear, thin, Au witness layer. The XUV emission seen from the rear of the Au indicated a clear dependence of proton beam transport upon atomic number, Z, of the transport layer: a larger and brighter emission spot was measured after proton transport through the lower Z foils even with equal mass density for supposed equivalent proton stopping range. Beam transport dynamics pertaining to the observed heated spot were investigated numerically with a particle-in-cell (PIC) code. In simulations protons moving through an Al transport layer result in higher Au temperature responsible for higher Au radiant emittance compared to a Cu transport case. The inferred finding that proton stopping varies with temperature in different materials, considerably changing the beam heating profile, can guide applications seeking to controllably heat targets with intense proton beams.

14.
Rev Sci Instrum ; 89(10): 10F106, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399788

RESUMO

K-shell x-ray spectra of Li- to H-like ions have long been used to determine plasma conditions. The ratio of integrated line intensities is used to determine the temperature. At the density of non-local thermal dynamic equilibrium (NLTE) plasmas (n e ≈ 1021 cm-3), the K-shell spectrum is not very sensitive to density. We propose using the L-shell emission of open L-shell ions (C- to Li-like) as an alternative to determine both temperature and density of NLTE plasmas. First, the L-shell models of a mid-Z material need to be verified against the temperatures obtained using a K-shell spectrum of a low-Z material. A buried layer platform is being developed at the OMEGA laser to study the open L-shell spectra of NLTE plasmas of mid-Z materials. Studies have been done using a 250 µm diameter dot composed of a layer of 1200 Å thick Zn between two 600 Å thick layers of Ti, in the center of a 1000 µm diameter, 13 µm thick beryllium tamper. Lasers heat the target from both sides for up to 3 ns. The size of the emitting volume vs time was measured with x-ray imaging (face-on and side-on) to determine the density. The temperature was measured from the Ti K-shell spectra. The use of this platform for the verification of atomic L-shell models is discussed.

15.
Rev Sci Instrum ; 89(10): 10F114, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399955

RESUMO

Extended X-ray absorption fine structure (EXAFS) spectroscopy is a powerful tool for in situ characterization of matter in the high energy density regime. An EXAFS platform is currently being developed on the National Ignition Facility. Development of a suitable X-ray backlighter involves minimizing the temporal duration and source size while maximizing spectral smoothness and brightness. One approach involves imploding a spherical shell, which generates a high-flux X-ray flash at stagnation. We present results from a series of experiments comparing the X-ray source properties produced by imploded empty and Ar-filled capsules.

16.
Rev Sci Instrum ; 88(8): 083907, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28863696

RESUMO

Extended X-ray absorption Fine Structure (EXAFS) measurements require a bright, spectrally smooth, and broad-band x-ray source. In a laser facility, such an x-ray source can be generated by a laser-driven capsule implosion. In order to optimize the x-ray emission, different capsule types and laser irradiations have been tested at the National Ignition Facility (NIF). A crystal spectrometer is used to disperse the x-rays and high efficiency image plate detectors are used to measure the absorption spectra in transmission geometry. EXAFS measurements at the K-edge of iron at ambient conditions have been obtained for the first time on the NIF laser, and the requirements for optimization have been established.

17.
Sci Rep ; 7(1): 7015, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28765571

RESUMO

Thermal conductivity is one of the most crucial physical properties of matter when it comes to understanding heat transport, hydrodynamic evolution, and energy balance in systems ranging from astrophysical objects to fusion plasmas. In the warm dense matter regime, experimental data are very scarce so that many theoretical models remain untested. Here we present the first thermal conductivity measurements of aluminum at 0.5-2.7 g/cc and 2-10 eV, using a recently developed platform of differential heating. A temperature gradient is induced in a Au/Al dual-layer target by proton heating, and subsequent heat flow from the hotter Au to the Al rear surface is detected by two simultaneous time-resolved diagnostics. A systematic data set allows for constraining both thermal conductivity and equation-of-state models. Simulations using Purgatorio model or Sesame S27314 for Al thermal conductivity and LEOS for Au/Al release equation-of-state show good agreement with data after 15 ps. Discrepancy still exists at early time 0-15 ps, likely due to non-equilibrium conditions.

18.
Phys Rev Lett ; 118(1): 015001, 2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-28106452

RESUMO

We report the first complete set of measurements of a laser-plasma optical system's refractive index, as seen by a second probe laser beam, as a function of the relative wavelength shift between the two laser beams. Both the imaginary and real refractive index components are found to be in good agreement with linear theory using plasma parameters measured by optical Thomson scattering and interferometry; the former is in contrast to previous work and has implications for crossed-beam energy transfer in indirect-drive inertial confinement fusion, and the latter is measured for the first time. The data include the first demonstration of a laser-plasma polarizer with 85%-87% extinction for the particular laser and plasma parameters used in this experiment, complementing the existing suite of high-power, tunable, and ultrafast plasma-based photonic devices.

19.
Rev Sci Instrum ; 87(11): 11D421, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910608

RESUMO

Our team has developed an experimental platform to evaluate the x-ray-generated stress and impulse in materials. Experimental activities include x-ray source development, design of the sample mounting hardware and sensors interfaced to the National Ignition Facility's diagnostics insertion system, and system integration into the facility. This paper focuses on the X-ray Transport and Radiation Response Assessment (XTRRA) test cassettes built for these experiments. The test cassette is designed to position six samples at three predetermined distances from the source, each known to within ±1% accuracy. Built-in calorimeters give in situ measurements of the x-ray environment along the sample lines of sight. The measured accuracy of sample responses as well as planned modifications to the XTRRA cassette is discussed.

20.
Rev Sci Instrum ; 87(11): 11E330, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910695

RESUMO

The Dante is an 18 channel filtered diode array used at the National Ignition Facility (NIF) to measure the spectrally and temporally resolved radiation flux between 50 eV and 20 keV from various targets. The absolute flux is determined from the radiometric calibration of the x-ray diodes, filters, and mirrors and a reconstruction algorithm applied to the recorded voltages from each channel. The reconstructed spectra are very low resolution with features consistent with the instrument response and are not necessarily consistent with the spectral emission features from the plasma. Errors may exist between the reconstructed spectra and the actual emission features due to assumptions in the algorithm. Recently, a high resolution convex crystal spectrometer, VIRGIL, has been installed at NIF with the same line of sight as the Dante. Spectra from L-shell Ag and Xe have been recorded by both VIRGIL and Dante. Comparisons of these two spectroscopic measurements yield insights into the accuracy of the Dante reconstructions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA