Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
J Peripher Nerv Syst ; 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39180472

RESUMO

INTRODUCTION: Radiation-induced peripheral neuropathy is a rare, but serious complication often resulting in profound morbidity, life-long disability, and chronic debilitating pain. Unfortunately, this type of peripheral neuropathy is usually progressive, and almost always irreversible. To date, a standardized rat model of radiation-induced peripheral neuropathy has not been established. The purpose of the present study was to examine neuropathic pain, sensorimotor impairment, and muscle force parameters following the administration of a clinically relevant radiation dose in a rat model. METHODS: Ten rats were randomly assigned to one of two experimental groups: (1) radiation and (2) sham-radiated controls. Radiated animals were given a clinically relevant dose of 35 Gray (Gy) divided into five daily doses of 7 Gy/day. This regimen represents a human equivalent dose of 70 Gy, approximating the same dosage utilized for radiotherapy in oncologic patients. Sham-radiated controls were anesthetized and placed in the radiation apparatus but were not given radiation. All animals were tested for baseline values in both sensorimotor and pain behavioral tests. Sensorimotor testing consisted of the evaluation of walking tracks with the calculation of the Sciatic Functional Index (SFI). Pain-related behavioral measures consisted of mechanical allodynia (von Frey test), cold allodynia (Acetone test), and thermal allodynia (Hargreaves test). Animals were tested serially over an 8-week period. At the study endpoint, electrophysiological and muscle force assessments were completed, and histomorphometric analysis was performed on all sciatic nerves. RESULTS: Animals that underwent radiation treatment displayed significantly greater pain hypersensitivity to mechanical stimulation as compared to sham radiated controls from weeks 4 to 8 of testing. SFI values indicated sensorimotor impairments in the overground gait of radiated animals as compared to non-radiated animals. Furthermore, radiated animals displayed reduced twitch and tetanic muscle force when compared to sham radiated controls. CONCLUSIONS: A clinically relevant human equivalent dose of fractionated 35 Gy in rats established significant pain hypersensitivity, impairments in sensorimotor locomotion, and decreased muscle force capacity. This novel rodent model of radiation-induced peripheral neuropathy can be utilized to assess the potential efficacy of therapeutic treatments to either prevent or remediate this clinically debilitating condition.

2.
Sci Data ; 11(1): 801, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030190

RESUMO

The diversity in genome resources is fundamental to designing genomic strategies for local breed improvement and utilisation. These resources also support gene discovery and enhance our understanding of the mechanisms of resilience with applications beyond local breeds. Here, we report the genome sequences of 555 cattle (208 of which comprise new data) and high-density (HD) array genotyping of 1,082 samples (537 new samples) from indigenous African cattle populations. The new sequences have an average genome coverage of ~30X, three times higher than the average (~10X) of the over 300 sequences already in the public domain. Following variant quality checks, we identified approximately 32.3 million sequence variants and 661,943 HD autosomal variants mapped to the Bos taurus reference genome (ARS-UCD1.2). The new datasets were generated as part of the Centre for Tropical Livestock Genetics and Health (CTLGH) Genomic Reference Resource for African Cattle (GRRFAC) initiative, which aspires to facilitate the generation of this livestock resource and hopes for its utilisation for complete indigenous breed characterisation and sustainable global livestock improvement.


Assuntos
Genoma , Bovinos/genética , Animais , Genômica , África , Cruzamento , Variação Genética
3.
Neurosci Lett ; 836: 137896, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39002881

RESUMO

INTRODUCTION: Following amputation, peripheral nerves lack distal targets for regeneration, often resulting in symptomatic neuromas and debilitating neuropathic pain. Animal models can establish a practical method for symptomatic neuroma formation for better understanding of neuropathic pain pathophysiology through behavioral and histological assessments. We created a clinically translatable animal model of symptomatic neuroma to mimic neuropathic pain in patients and assess sexual differences in pain behaviors. METHODS: Twenty-two male and female rats were randomly assigned to one of two experimental groups: (1) neuroma surgery, or (2) sham surgery. For the neuroma experimental group, the tibial nerve was transected in the thigh, and the proximal segment was placed under the skin for mechanical testing at the site of neuroma. For the sham surgery, rats underwent tibial nerve isolation without transection. Behavioral testing consisted of neuroma-site pain, mechanical allodynia, cold allodynia, and thermal hyperalgesia at baseline, and then weekly over 8 weeks. RESULTS: Male and female neuroma rats demonstrated significantly higher neuroma-site pain response compared to sham groups starting at weeks 3 and 4, indicating symptomatic neuroma formation. Weekly assessment of mechanical and cold allodynia among neuroma groups showed a significant difference in pain behavior compared to sham groups (p < 0.001). Overall, males and females did not display significant differences in their pain responses. Histology revealed a characteristic neuroma bulb at week 8, including disorganized axons, fibrotic tissue, Schwann cell displacement, and immune cell infiltration. CONCLUSION: This novel animal model is a useful tool to investigate underlying mechanisms of neuroma formation and neuropathic pain.


Assuntos
Modelos Animais de Doenças , Hiperalgesia , Neuralgia , Neuroma , Animais , Masculino , Neuroma/patologia , Neuralgia/fisiopatologia , Neuralgia/patologia , Neuralgia/etiologia , Feminino , Hiperalgesia/fisiopatologia , Hiperalgesia/patologia , Ratos Sprague-Dawley , Ratos , Nervo Tibial/patologia , Nervo Tibial/fisiopatologia , Medição da Dor/métodos
4.
Ann Surg ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716659

RESUMO

OBJECTIVE: To evaluate the prophylactic effect of Regenerative Peripheral Nerve Interface (RPNI) surgery on pediatric post-amputation pain. SUMMARY OF BACKGROUND DATA: Chronic post-amputation pain is a debilitating and refractory sequela of limb amputation affecting up to 83% of pediatric patients with limb loss, resulting in disability and decreased quality of life. We postulate that prophylactic RPNI surgery performed during amputation may decrease the incidence of symptomatic neuroma and development of phantom limb pain, as well as limit analgesic use among pediatric patients with limb loss. METHODS: Retrospective chart review was performed on pediatric patients between the ages of 8 and 21 years who underwent major lower limb amputation with and without RPNI surgery. Documented neuroma and phantom limb pain scores as well as analgesic use was recorded. Narcotic use was converted to milligrams morphine equivalents per day (MME/day) while overall analgesic use was converted to Medication Quantification Scale version III (MQSIII) scores. Analysis was performed using Stata. RESULTS: Forty-four pediatric patients were identified; 25 RPNI patients and 19 controls. Seventy-nine percent of control patients developed chronic post-amputation pain versus 21% of RPNI patients (P<0.001). Among the patients who developed post-amputation pain, 20% of controls developed clinical neuroma pain, compared to 0% of RPNI patients (P<0.001). Additionally, RPNI patients demonstrated a significant decrease in pain score (P=0.007) and narcotic usage (P<0.01), compared to controls. Overall analgesic use did not vary significantly between groups. CONCLUSIONS: Prophylactic RPNI surgery shows promise for pediatric patients undergoing major lower limb amputation by preventing both symptomatic neuromas and possibly the development of phantom limb pain.

5.
Semin Plast Surg ; 38(1): 19-24, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38495062

RESUMO

Chronic pain resulting from peripheral nerve injury remains a common issue in the United States and affects 7 to 10% of the population. Regenerative Peripheral Nerve Interface (RPNI) surgery is an innovative surgical procedure designed to treat posttraumatic neuropathic pain, particularly when a symptomatic neuroma is present on clinical exam. RPNI surgery involves implantation of a transected peripheral nerve into an autologous free muscle graft to provide denervated targets to regenerating axons. RPNI surgery has been found in animal and human studies to be highly effective in addressing postamputation pain. While most studies have reported its uses in the amputation patient population for the treatment of neuroma and phantom limb pain, RPNI surgery has recently been used to address refractory headache, postmastectomy pain, and painful donor sites from the harvest of neurotized flaps. This review summarizes the current understanding of RPNI surgery for the treatment of chronic neuropathic pain.

6.
Semin Plast Surg ; 38(1): 10-18, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38495064

RESUMO

Limb amputations can be devastating and significantly affect an individual's independence, leading to functional and psychosocial challenges in nearly 2 million people in the United States alone. Over the past decade, robotic devices driven by neural signals such as neuroprostheses have shown great potential to restore the lost function of limbs, allowing amputees to regain movement and sensation. However, current neuroprosthetic interfaces have challenges in both signal quality and long-term stability. To overcome these limitations and work toward creating bionic limbs, the Neuromuscular Laboratory at University of Michigan Plastic Surgery has developed the Regenerative Peripheral Nerve Interface (RPNI). This surgical construct embeds a transected peripheral nerve into a free muscle graft, effectively amplifying small peripheral nerve signals to provide enhanced control signals for a neuroprosthetic limb. Furthermore, the RPNI has the potential to provide sensory feedback to the user and facilitate neuroprosthesis embodiment. This review focuses on the animal studies and clinical trials of the RPNI to recapitulate the promising trajectory toward neurobionics where the boundary between an artificial device and the human body becomes indistinct. This paper also sheds light on the prospects of the improvement and dissemination of the RPNI technology.

7.
Semin Plast Surg ; 38(1): 3-9, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38495067

RESUMO

In 1964, the Section of Plastic and Reconstructive Surgery at the University of Michigan opened its doors to future surgeons and leaders in the field. Today, we are celebrating the 60-year history of the program and its significant contributions to the field. Beginning under the leadership of Reed O. Dingman, MD, DDS, the program began with three faculty members and two independent surgical residents. Since that time, it has expanded dramatically to include 24 faculty members and 28 integrated plastic surgery residents. The goals of the program have always been to achieve excellence in all three of our academic missions including clinical care, teaching, and research. Annually, the program sees an average of 35,000 outpatient clinic visits, 4,000 major operations, 200 peer-reviewed publications, $5,000,000 in research spending, and residents who are well trained and highly competitive for fellowships of their choosing every single year. Through scientific collaborations, academic exchanges, and medical missions, the program's influence has spread beyond Michigan, reaching the entire world. In addition to training world-renowned surgeons, Michigan's faculty and graduates have assumed leadership roles in prestigious professional organizations, scientific journals, and research foundations. In this article, we explore the roots of the program and reflect on six decades of impact, innovation, and inspiration.

8.
Semin Plast Surg ; 38(1): 2, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38495061
9.
Plast Reconstr Surg Glob Open ; 11(11): e5415, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38025619

RESUMO

Background: Opioid misuse after surgery remains a public health crisis in the United States. Recent efforts have focused on tracking pain medication use in surgical populations. However, accurate interpretations of medication use remain quite challenging given inconsistent usage of different datasets. The purpose of this study was to investigate the agreement between electronic medical records (EMR) versus patient self-reported use of pain medications in a surgical amputation population. Methods: Patients undergoing major lower extremity amputation or amputation-related procedures were included in this study. Both self-reported and EMR data for pain medication intake were obtained for each patient at three time points (preoperatively, 4 months postoperatively, and 12 months postoperatively). Percentage agreement and the kappa statistic were calculated for both usage (yes/no) and dose categories. Results: Forty-five patients were included in this study, resulting in 108 pairs of self-reported and EMR datasets. Substantial levels of agreement (>70% agreement, kappa >0.61) for opioid use was seen at preoperative and 12 months postoperative. However, agreement dropped at 4 months postoperatively. Anticonvulsant medication showed high levels, whereas acetaminophen showed lower levels of agreements at all time points. Conclusions: Either self-reported or EMR data may be used in research and clinical settings for preoperative or 12-month postoperative patients with little concern for discrepancies. However, at time points immediately following the expected end of acute surgical pain, self-reported data may be needed for more accurate medication reporting. With these findings in mind, usage of datasets should be driven by study objectives and the dataset's strength (eg, accuracy, ease, lack of bias).

10.
Plast Reconstr Surg ; 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37400949

RESUMO

SUMMARY: Treatment of painful neuromas has long posed a significant challenge for peripheral nerve patients. The Regenerative Peripheral Nerve Interface (RPNI) provides the transected nerve with a muscle graft target to prevent neuroma formation. Discrepancies in the RPNI surgical techniques between animal models (Inlay-RPNI) versus clinical studies (Burrito-RPNI) preclude direct translation of results from bench to bedside and may account for variabilities in patient outcomes. We compared outcomes of these two surgical techniques in a rodent model. Animals treated with the Burrito-RPNI after tibial nerve neuroma formation demonstrated no improvement in pain assessment, and tissue analysis revealed complete atrophy of the muscle graft with neuroma recurrence. By contrast, animals treated with the Inlay-RPNI had significant improvements in pain with viable muscle grafts. Our results suggest superiority of the Inlay-RPNI surgical technique for the management of painful neuroma in rodents.

12.
Neurosurgery ; 93(5): 1180-1191, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37265342

RESUMO

BACKGROUND AND OBJECTIVES: Targeted muscle reinnervation (TMR) and regenerative peripheral nerve interface (RPNI) surgeries manage neuroma pain; however, there remains considerable discord regarding the best treatment strategy. We provide a direct comparison of TMR and RPNI surgery using a rodent model for the treatment of neuroma pain. METHODS: The tibial nerve of 36 Fischer rats was transected and secured to the dermis to promote neuroma formation. Pain was assessed using mechanical stimulation at the neuroma site (direct pain) and von Frey analysis at the footpad (to assess tactile allodynia from collateral innervation). Once painful neuromas were detected 6 weeks later, animals were randomized to experimental groups: (a) TMR to the motor branch to biceps femoris, (b) RPNI with an extensor digitorum longus graft, (c) neuroma excision, and (d) neuroma in situ. The TMR/RPNIs were harvested to confirm muscle reinnervation, and the sensory ganglia and nerves were harvested to assess markers of regeneration, pain, and inflammation. RESULTS: Ten weeks post-TMR/RPNI surgery, animals had decreased pain scores compared with controls ( P < .001) and they both demonstrated neuromuscular junction reinnervation. Compared with neuroma controls, immunohistochemistry showed that sensory neuronal cell bodies of TMR and RPNI showed a decrease in regeneration markers phosphorylated cyclic AMP receptor binding protein and activation transcription factor 3 and pain markers transient receptor potential vanilloid 1 and neuropeptide Y ( P < .05). The nerve and dorsal root ganglion maintained elevated Iba-1 expression in all cohorts. CONCLUSION: RPNI and TMR improved pain scores after neuroma resection suggesting both may be clinically feasible techniques for improving outcomes for patients with nerve injuries or those undergoing amputation.


Assuntos
Amputação Cirúrgica , Neuroma , Animais , Humanos , Ratos , Músculo Esquelético/inervação , Neuroma/prevenção & controle , Neuroma/cirurgia , Dor , Nervo Tibial
13.
Neurosurgery ; 93(5): 1192-1201, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37227138

RESUMO

BACKGROUND: Treating neuroma pain is a clinical challenge. Identification of sex-specific nociceptive pathways allows a more individualized pain management. The Regenerative Peripheral Nerve Interface (RPNI) consists of a neurotized autologous free muscle using a severed peripheral nerve to provide physiological targets for the regenerating axons. OBJECTIVE: To evaluate prophylactic RPNI to prevent neuroma pain in male and female rats. METHODS: F344 rats of each sex were assigned to neuroma, prophylactic RPNI, or sham groups. Neuromas and RPNIs were created in both male and female rats. Weekly pain assessments including neuroma site pain and mechanical, cold, and thermal allodynia were performed for 8 weeks. Immunohistochemistry was used to evaluate macrophage infiltration and microglial expansion in the corresponding dorsal root ganglia and spinal cord segments. RESULTS: Prophylactic RPNI prevented neuroma pain in both sexes; however, female rats displayed delayed pain attenuation when compared with males. Cold allodynia and thermal allodynia were attenuated exclusively in males. Macrophage infiltration was mitigated in males, whereas females showed a reduced number of spinal cord microglia. CONCLUSION: Prophylactic RPNI can prevent neuroma site pain in both sexes. However, attenuation of both cold allodynia and thermal allodynia occurred in males exclusively, potentially because of their sexually dimorphic effect on pathological changes of the central nervous system.


Assuntos
Hiperalgesia , Neuroma , Ratos , Masculino , Feminino , Animais , Hiperalgesia/etiologia , Hiperalgesia/prevenção & controle , Ratos Endogâmicos F344 , Dor , Neuroma/prevenção & controle , Nervos Periféricos/fisiologia
14.
J Neural Eng ; 20(2)2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37023743

RESUMO

Objective.Extracting signals directly from the motor system poses challenges in obtaining both high amplitude and sustainable signals for upper-limb neuroprosthetic control. To translate neural interfaces into the clinical space, these interfaces must provide consistent signals and prosthetic performance.Approach.Previously, we have demonstrated that the Regenerative Peripheral Nerve Interface (RPNI) is a biologically stable, bioamplifier of efferent motor action potentials. Here, we assessed the signal reliability from electrodes surgically implanted in RPNIs and residual innervated muscles in humans for long-term prosthetic control.Main results.RPNI signal quality, measured as signal-to-noise ratio, remained greater than 15 for up to 276 and 1054 d in participant 1 (P1), and participant 2 (P2), respectively. Electromyography from both RPNIs and residual muscles was used to decode finger and grasp movements. Though signal amplitude varied between sessions, P2 maintained real-time prosthetic performance above 94% accuracy for 604 d without recalibration. Additionally, P2 completed a real-world multi-sequence coffee task with 99% accuracy for 611 d without recalibration.Significance.This study demonstrates the potential of RPNIs and implanted EMG electrodes as a long-term interface for enhanced prosthetic control.


Assuntos
Membros Artificiais , Nervos Periféricos , Humanos , Reprodutibilidade dos Testes , Nervos Periféricos/fisiologia , Extremidade Superior , Eletromiografia/métodos , Eletrodos Implantados , Eletrodos
15.
Plast Reconstr Surg ; 151(5): 804e-813e, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36729137

RESUMO

BACKGROUND: Without meaningful, intuitive sensory feedback, even the most advanced myoelectric devices require significant cognitive demand to control. The dermal sensory regenerative peripheral nerve interface (DS-RPNI) is a biological interface designed to establish high-fidelity sensory feedback from prosthetic limbs. METHODS: DS-RPNIs were constructed in rats by securing fascicles of residual sensory peripheral nerves into autologous dermal grafts, with the objectives of confirming regeneration of sensory afferents within DS-RPNIs and establishing the reliability of afferent neural response generation with either mechanical or electrical stimulation. RESULTS: Two months after implantation, DS-RPNIs were healthy and displayed well-vascularized dermis with organized axonal collaterals throughout and no evidence of neuroma. Electrophysiologic signals were recorded proximal from DS-RPNI's sural nerve in response to both mechanical and electrical stimuli and compared with (1) full-thickness skin, (2) deepithelialized skin, and (3) transected sural nerves without DS-RPNI. Mechanical indentation of DS-RPNIs evoked compound sensory nerve action potentials (CSNAPs) that were like those evoked during indentation of full-thickness skin. CSNAP firing rates and waveform amplitudes increased in a graded fashion with increased mechanical indentation. Electrical stimuli delivered to DS-RPNIs reliably elicited CSNAPs at low current thresholds, and CSNAPs gradually increased in amplitude with increasing stimulation current. CONCLUSIONS: These findings suggest that afferent nerve fibers successfully reinnervate DS-RPNIs, and that graded stimuli applied to DS-RPNIs produce proximal sensory afferent responses similar to those evoked from normal skin. This confirmation of graded afferent signal transduction through DS-RPNI neural interfaces validate DS-RPNI's potential role of facilitating sensation in human-machine interfacing. CLINICAL RELEVANCE STATEMENT: The DS-RPNI is a novel biotic-abiotic neural interface that allows for transduction of sensory stimuli into neural signals. It is expected to advance the restoration of natural sensation and development of sensorimotor control in prosthetics.


Assuntos
Retroalimentação Sensorial , Nervos Periféricos , Ratos , Humanos , Animais , Retroalimentação , Reprodutibilidade dos Testes , Nervos Periféricos/fisiologia , Nervo Sural , Regeneração Nervosa/fisiologia
16.
J Hand Surg Eur Vol ; 48(3): 182-190, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36649123

RESUMO

Replacing human hand function with prostheses goes far beyond only recreating muscle movement with feedforward motor control. Natural sensory feedback is pivotal for fine dexterous control and finding both engineering and surgical solutions to replace this complex biological function is imperative to achieve prosthetic hand function that matches the human hand. This review outlines the nature of the problems underlying sensory restitution, the engineering methods that attempt to address this deficit and the surgical techniques that have been developed to integrate advanced neural interfaces with biological systems. Currently, there is no single solution to restore sensory feedback. Rather, encouraging animal models and early human studies have demonstrated that some elements of sensation can be restored to improve prosthetic control. However, these techniques are limited to highly specialized institutions and much further work is required to reproduce the results achieved, with the goal of increasing availability of advanced closed loop prostheses that allow sensory feedback to inform more precise feedforward control movements and increase functionality.


Assuntos
Membros Artificiais , Animais , Humanos , Extremidade Superior/cirurgia , Mãos/cirurgia , Mãos/fisiologia , Sensação , Retroalimentação Sensorial , Desenho de Prótese
17.
Skeletal Radiol ; 52(6): 1137-1157, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36547677

RESUMO

OBJECTIVE: To describe the ultrasound (US) appearance of regenerative peripheral nerve interfaces (RPNIs) in humans, and correlate clinically and with histologic findings from rat RPNI. MATERIALS AND METHODS: Patients (≥ 18 years) who had undergone RPNI surgery within our institution between the dates of 3/2018 and 9/2019 were reviewed. A total of 21 patients (15 male, 6 female, age 21-82 years) with technically adequate US studies of RPNIs were reviewed. Clinical notes were reviewed for the presence of persistent pain after RPNI surgery. Histologic specimens of RPNIs in a rat model from prior studies were compared with the US findings noted in this study. RESULTS: There was a variable appearance to the RPNIs including focal changes involving the distal nerve, nerve-muscle graft junction, and area of the distal sutures. The muscle grafts varied in thickness with accompanying variable echogenic changes. No interval change was noted on follow-up US studies. Diffuse hypoechoic swelling with loss of the fascicular structure of the nerve within the RPNI and focal hypoechoic changes at the nerve-muscle graft junction were associated with clinical outcomes. US findings corresponded to histologic findings in the rat RPNI. CONCLUSION: Ultrasound imaging can demonstrate various morphologic changes involving the nerve, muscle, and interface between these two biological components of RPNIs. These changes correspond to expected degenerative and regenerative processes following nerve resection and muscle reinnervation and should not be misconstrued as pathologic in all cases. N5 and N1 morphologic type changes of the RPNI were found to be associated with symptoms.


Assuntos
Regeneração Nervosa , Nervos Periféricos , Humanos , Ratos , Masculino , Feminino , Animais , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Nervos Periféricos/diagnóstico por imagem , Regeneração Nervosa/fisiologia , Músculos , Dor , Ultrassonografia
18.
Mol Biol Evol ; 39(12)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36382357

RESUMO

Understanding the genetic mechanism of how animals adapt to extreme conditions is fundamental to determine the relationship between molecular evolution and changing environments. Goat is one of the first domesticated species and has evolved rapidly to adapt to diverse environments, including harsh high-altitude conditions with low temperature and poor oxygen supply but strong ultraviolet radiation. Here, we analyzed 331 genomes of domestic goats and wild caprid species living at varying altitudes (high > 3000 m above sea level and low < 1200 m), along with a reference-guided chromosome-scale assembly (contig-N50: 90.4 Mb) of a female Tibetan goat genome based on PacBio HiFi long reads, to dissect the genetic determinants underlying their adaptation to harsh conditions on the Qinghai-Tibetan Plateau (QTP). Population genomic analyses combined with genome-wide association studies (GWAS) revealed a genomic region harboring the 3'-phosphoadenosine 5'-phosphosulfate synthase 2 (PAPSS2) gene showing strong association with high-altitude adaptability (PGWAS = 3.62 × 10-25) in Tibetan goats. Transcriptomic data from 13 tissues revealed that PAPSS2 was implicated in hypoxia-related pathways in Tibetan goats. We further verified potential functional role of PAPSS2 in response to hypoxia in PAPSS2-deficient cells. Introgression analyses suggested that the PAPSS2 haplotype conferring the high-altitude adaptability in Tibetan goats originated from a recent hybridization between goats and a wild caprid species, the markhor (Capra falconeri). In conclusion, our results uncover a hitherto unknown contribution of PAPSS2 to high-altitude adaptability in Tibetan goats on QTP, following interspecific introgression and natural selection.


Assuntos
Estudo de Associação Genômica Ampla , Cabras , Animais , Cabras/genética , Raios Ultravioleta , Genômica
19.
Plast Reconstr Surg Glob Open ; 10(9): e4549, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36187278

RESUMO

Despite advancements in surgical and rehabilitation strategies, extremity amputations are frequently associated with disability, phantom limb sensations, and chronic pain. Investigation into potential treatment modalities has focused on the pathophysiological changes in both the peripheral and central nervous systems to better understand the underlying mechanism in the development of chronic pain in persons with amputations. Methods: Presented in this article is a discussion outlining the physiological changes that occur in the peripheral and central nervous systems following amputation. In this review, the authors examine the molecular and neuroplastic changes occurring in the nervous system, as well as the state-of-the-art treatment to help reduce the development of postamputation pain. Results: This review summarizes the current literature regarding neurological changes following amputation. Development of both central sensitization and neuronal remodeling in the spinal cord and cerebral cortex allows for the development of neuropathic and phantom limb pain postamputation. Recently developed treatments targeting these pathophysiological changes have enabled a reduction in the severity of pain; however, complete resolution remains elusive. Conclusions: Changes in the peripheral and central nervous systems following amputation should not be viewed as separate pathologies, but rather two interdependent mechanisms that underlie the development of pathological pain. A better understanding of the physiological changes following amputation will allow for improvements in therapeutic treatments to minimize pathological pain caused by amputation.

20.
Front Vet Sci ; 9: 894075, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928111

RESUMO

The undifferentiated spermatogonial population in mammalian testes contains a spermatogonial stem cell (SSC) population that can regenerate continual spermatogenesis following transplantation. This capacity has the potential to be exploited as a surrogate sires breeding tool to achieve widespread dissemination of desirable genetics in livestock production. Because SSCs are relatively rare in testicular tissue, the ability to expand a population in vitro would be advantageous to provide large numbers for transplantation into surrogate recipient males. Here, we evaluated conditions that would support long-term in-vitro maintenance of undifferentiated spermatogonia from a goat breed that is endemic to Kenyan livestock production. Single-cell suspensions enriched for undifferentiated spermatogonia from pre-pubertal bucks were seeded on laminin-coated tissue culture plates and maintained in a commercial media based on serum-free composition. The serum-free media was conditioned on goat fetal fibroblasts and supplemented with a growth factor cocktail that included glial cell line-derived neurotrophic factor (GDNF), leukemia inhibitory factor (LIF), stromal cell-derived factor (SDF), and fibroblast growth factor (FGF) before use. Over 45 days, the primary cultures developed a cluster morphology indicative of in-vitro grown undifferentiated spermatogonia from other species and expressed the germ cell marker VASA, as well as the previously defined spermatogonial marker such as promyelocytic leukemia zinc finger (PLZF). Taken together, these findings provide a methodology for isolating the SSC containing undifferentiated spermatogonial population from goat testes and long-term maintenance in defined culture conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA