Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cureus ; 15(11): e48225, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38050509

RESUMO

This case is a unique pediatric presentation of a surfer's myelopathy, now referred to as acute hyperextension-induced myelopathy (AHIM), that provides an optimistic rehabilitation outcome. A 13-year-old boy presented to the emergency department with back pain, paraplegia, urinary retention, and dysesthesia following his first surfing lesson while visiting Hawaii. MRI of the thoracic spine without contrast showed a significant T2 hyperintense signal in the T9-T12 distal thoracic cord, consistent with AHIM. He completed a 10-day inpatient rehabilitation program and experienced exceptional improvement in functional mobility. AHIM is a rare phenomenon that is triggered by repetitive spinal hyperextension. While there are studies describing this clinical syndrome in detail, the literature lacks information about rehabilitation outcomes for these patients. Following the diagnosis and acute management of AHIM, a comprehensive inpatient rehabilitation program is recommended to maximize functional improvement.

2.
Proc Natl Acad Sci U S A ; 120(19): e2215068120, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126687

RESUMO

Poly(ADP-ribose) (PAR) is a homopolymer of adenosine diphosphate ribose that is added to proteins as a posttranslational modification to regulate numerous cellular processes. PAR also serves as a scaffold for protein binding in macromolecular complexes, including biomolecular condensates. It remains unclear how PAR achieves specific molecular recognition. Here, we use single-molecule fluorescence resonance energy transfer (smFRET) to evaluate PAR flexibility under different cation conditions. We demonstrate that, compared to RNA and DNA, PAR has a longer persistence length and undergoes a sharper transition from extended to compact states in physiologically relevant concentrations of various cations (Na+, Mg2+, Ca2+, and spermine4+). We show that the degree of PAR compaction depends on the concentration and valency of cations. Furthermore, the intrinsically disordered protein FUS also served as a macromolecular cation to compact PAR. Taken together, our study reveals the inherent stiffness of PAR molecules, which undergo switch-like compaction in response to cation binding. This study indicates that a cationic environment may drive recognition specificity of PAR.


Assuntos
Adenosina Difosfato Ribose , Poli Adenosina Difosfato Ribose , Poli Adenosina Difosfato Ribose/química , Poli Adenosina Difosfato Ribose/metabolismo , Adenosina Difosfato Ribose/química , Processamento de Proteína Pós-Traducional , Ligação Proteica , Fenômenos Fisiológicos Celulares
3.
bioRxiv ; 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36993178

RESUMO

Poly(ADP-ribose) (PAR) is a homopolymer of adenosine diphosphate ribose that is added to proteins as a post-translational modification to regulate numerous cellular processes. PAR also serves as a scaffold for protein binding in macromolecular complexes, including biomolecular condensates. It remains unclear how PAR achieves specific molecular recognition. Here, we use single-molecule fluorescence resonance energy transfer (smFRET) to evaluate PAR flexibility under different cation conditions. We demonstrate that, compared to RNA and DNA, PAR has a longer persistence length and undergoes a sharper transition from extended to compact states in physiologically relevant concentrations of various cations (Na + , Mg 2+ , Ca 2+ , and spermine). We show that the degree of PAR compaction depends on the concentration and valency of cations. Furthermore, the intrinsically disordered protein FUS also served as a macromolecular cation to compact PAR. Taken together, our study reveals the inherent stiffness of PAR molecules, which undergo switch-like compaction in response to cation binding. This study indicates that a cationic environment may drive recognition specificity of PAR. Significance: Poly(ADP-ribose) (PAR) is an RNA-like homopolymer that regulates DNA repair, RNA metabolism, and biomolecular condensate formation. Dysregulation of PAR results in cancer and neurodegeneration. Although discovered in 1963, fundamental properties of this therapeutically important polymer remain largely unknown. Biophysical and structural analyses of PAR have been exceptionally challenging due to the dynamic and repetitive nature. Here, we present the first single-molecule biophysical characterization of PAR. We show that PAR is stiffer than DNA and RNA per unit length. Unlike DNA and RNA which undergoes gradual compaction, PAR exhibits an abrupt switch-like bending as a function of salt concentration and by protein binding. Our findings points to unique physical properties of PAR that may drive recognition specificity for its function.

4.
Resuscitation ; 185: 109740, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36805101

RESUMO

BACKGROUND: Cardiac arrest is a leading cause of mortality prior to discharge for children admitted to the pediatric intensive care unit. To address this problem, we used machine learning to predict cardiac arrest up to three hours in advance. METHODS: Our data consists of 240 Hz ECG waveform data, 0.5 Hz physiological time series data, medications, and demographics from 1,145 patients in the pediatric intensive care unit at the Johns Hopkins Hospital, 15 of whom experienced a cardiac arrest. The data were divided into training, validating, and testing sets, and features were generated every five minutes. 23 heart rate variability (HRV) metrics were determined from ECG waveforms. 96 summary statistics were calculated for 12 vital signs, such as respiratory rate and blood pressure. Medications were classified into 42 therapeutic drug classes. Binary features were generated to indicate the administration of these different drugs. Next, six machine learning models were evaluated: logistic regression, support vector machine, random forest, XGBoost, LightGBM, and a soft voting ensemble. RESULTS: XGBoost performed the best, with 0.971 auROC, 0.797 auPRC, 99.5% sensitivity, and 69.6% specificity on an independent test set. CONCLUSION: We have created high-performing models that identify signatures of in-hospital cardiac arrest (IHCA) that may not be evident to clinicians. These signatures include a combination of heart rate variability metrics, vital signs data, and therapeutic drug classes. These machine learning models can predict IHCA up to three hours prior to onset with high performance, allowing clinicians to intervene earlier, improving patient outcomes.


Assuntos
Parada Cardíaca , Criança , Humanos , Projetos Piloto , Unidades de Terapia Intensiva Pediátrica , Sinais Vitais , Aprendizado de Máquina , Unidades de Terapia Intensiva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA