Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(2): 2509-2521, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38170818

RESUMO

As the excessive presence of heavy metals in the environment significantly affects human health, it becomes necessary to develop efficient, selective, and sensitive methods for their detection. In this study, a novel electrochemical sensor for the detection of Pb2+ ions is described. The proposed sensor is based on a glassy carbon electrode (GCE) modified by a thin film of histidine-grafted metal-organic framework (MOF-808-His). The MOF-808 was obtained solvothermally, and then postsynthetically modified by substituting the coordinated acetate with histidinate. By electrochemistry, the MOF-808-His-modified GCE demonstrated high charge selectivity, while electrochemical impedance spectroscopy (EIS) and kinetic studies gave a lower charge transfer resistance (4196 Ω) and a better standard heterogeneous electron transfer rate constant (1.80 × 10-5 cm s-1) on MOF-808-modified GCE. These results indicated a swift and direct electron transfer rate from [Fe(CN)6]3-/4- to the electrode surface. Using square wave anodic stripping voltammetry (SWASV), the rapid and highly sensitive determination of Pb2+ was achieved on MOF-808-His-modified GCE. By optimizing the accumulation-detection parameters including pH of the detection medium, deposition time and potential, and concentration, a remarkable limit of detection (LoD, based on a signal-to-noise ratio of 3) of (1.12 × 10-10 ± 0.10 × 10-10) mol L-1 was obtained, with a sensitivity of (9.6 ± 0.1) µA L µmol-1. After interference and stability studies, the MOF-808-His-modified GCE was applied to the detection of Pb2+ in a tap water sample with a concentration of 10 µmol L-1 Pb2+.

2.
Environ Sci Process Impacts ; 25(3): 340-350, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36661397

RESUMO

One of the crucial steps in the development of a new pesticide (active molecule) is predicting its environmental and in vivo fate, so as to determine potential consequences to a living organism's health and ecology as a whole. In this regard, pesticides undergo transformation processes in response to biotic and abiotic stress. Therefore, there is a need to investigate pesticide transformation products (TPs) and the formation processes they could undergo during the manufacturing process and when discharged into the ecosystem. Although methods based on biological in vitro and in vivo experimental models are tools of choice for the elucidation of metabolic pathways of pesticides (xenobiotics in general), electrochemistry-based techniques offer numerous advantages such as rapid and low-cost analysis, easy implementation, low sample volume requirement, no matrix effects, and miniaturization to improve the performance of the developed methods. However, for greater efficiency, electrochemistry (EC) should be coupled with analytical techniques such as mass spectrometry (MS) and sometimes liquid chromatography (LC), leading to the so-called EC-MS and EC-LC-MS hybrid techniques. In this review, past studies, current applications and utilization of EC-MS and EC-LC-MS techniques for the simulation of environmental fate/degradation of pesticides were reviewed by selected studies with chemical transformation, structures of metabolites, and some experimental conditions. The current challenges and future trends for the mimicry and prediction of the environmental fate/degradation of pesticides based on electrochemical methods combined with mass spectrometry were highlighted.


Assuntos
Praguicidas , Praguicidas/análise , Eletroquímica/métodos , Ecossistema , Espectrometria de Massas/métodos , Cromatografia Líquida/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA