Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35806678

RESUMO

In many nations, particularly those experiencing water scarcity, novel approaches are being applied to clean wastewater. Heterogeneous photocatalysis is the most widely used of these approaches because it entails the decomposition of organic molecules into water and carbon dioxide, which is a more ecologically benign process. In our study, we studied the photocatalytic degradation process on the effluent flumequine. This treatment is made through a solar pilot reactor in the presence of immobilized titanium dioxide with three light intensities and two types of water as solvents. A variety of factors that might influence the rate of deterioration, such as flow rate, light intensity, and initial concentration, have been investigated. The maximal degradation of flumequine was achieved at more than 90% after 2.5 h under optimal conditions (an initial concentration of 5 mg/L, three lamp light intensities, and a flow rate of 29 L/h). By combining the oxidized agent H2O2 with this process, the photocatalytic activity was improved further to 97% under the same conditions. The mineralization of this product has also been tested using total organic carbon (TOC) analysis. A high mineralization rate has been recorded at around 50% for a high initial concentration (20 mg/L) at a flow rate of 126 L/h. The results demonstrated the highly effective removal of flumequine and the efficacy of this photocatalytic system.

2.
Environ Sci Pollut Res Int ; 29(50): 75512-75524, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35655019

RESUMO

The heterogeneous photocatalysis is known to provide significant degradation and mineralization of emerging contaminants including antibiotics. For this, nanosized Mg0.3Zn0.7O (MZO) was prepared by nitrate route to be used as photocatalyst. The single-phase was confirmed by X-ray diffraction with a crystallite size of 33 nm. The morphology was visualized by scanning electron microscope/energy-dispersive X-ray analysis. The physicochemical properties were studied by the FTIR, XPS, and optical analyses. The diffuse reflectance gives a direct forbidden band of 3.26 eV. The electrochemical characterization showed an n-type semiconductor with a flat band of - 0.56 VAg/AgCl. The photodegradation of Cefixime (CFX) was carried out under solar light; the operating parameters such as the catalyst dose, solution pH, and initial CFX concentration (Co) were optimized. The best performance occurs at neutral pH ~ 6 within 4 h with an abatement of 94% for an initial CFX concentration of 5 mg/L and MZO dose of 0.75 g/L. The photodegradation follows a first-order kinetic with an apparent rate constant of 0.012 min-1. The effects of scavenging agents indicated the dominant role of hydroxyl •OH followed by the holes (h+). The results showed the potentiality of MZO as an environmentally friendly photocatalyst for CFX photodegradation.


Assuntos
Antibacterianos , Nitratos , Catálise , Cefixima , Luz , Fotólise , Zinco
3.
Environ Sci Pollut Res Int ; 29(37): 55321-55335, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35661305

RESUMO

Nowadays, in parallel to the appearance of the COVID-19 virus, the risk of viruses in water increases leading to the necessity of developing novel disinfection methods. This review focuses on the route of virus contamination in water and introduces non-thermal plasma technology as a promising method for the inactivation of viruses. Effects of essential parameters affecting the non-thermal discharge for viral inactivation have been exposed. The review has also illustrated a critical discussion of this technology with other advanced oxidation processes. Additionally, the inactivation mechanisms have also been detailed based on reactive oxygen and nitrogen species.


Assuntos
COVID-19 , Vírus , Desinfecção/métodos , Humanos , Inativação de Vírus , Água
4.
Materials (Basel) ; 14(18)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34576631

RESUMO

This work aims to synthesize and characterize a material that can be used as an effective catalyst for photocatalytic application to remove both organic and inorganic compounds from wastewater. In this context, sillenite Bi12ZnO20 (BZO) in a pure phase was synthesized using the sol-gel method. Before calcination, differential scanning calorimetry (DSC) analysis was done to determine the temperature of the formation of the sillenite phase, which was found to be 800 °C. After calcination, the phase was identified by X-ray diffraction (XRD) and then refined using the Rietveld refinement technique. The results prove that BZO crystals have a cubic symmetry with the space group I23 (N°197); the lattice parameters of the structure were also determined. From the crystalline size, the surface area was estimated using the Brunauer-Emmett-Teller (BET) method, which was found to be 11.22 m2/g. The formation of sillenite was also checked using the Raman technique. The morphology of the crystals was visualized using electron scanning microscope (SEM) analysis. After that, the optical properties of BZO were investigated by diffuse reflectance spectroscopy (DRS) and photoluminescence (PL); an optical gap of 2.9 eV was found. In the final step, the photocatalytic activity of the BZO crystals was evaluated for the removal of inorganic and organic pollutants, namely hexavalent chromium Cr(VI) and Cefixime (CFX). An efficient removal rate was achieved for both contaminants within only 3 h, with a 94.34% degradation rate for CFX and a 77.19% reduction rate for Cr(VI). Additionally, a kinetic study was carried out using a first-order model, and the results showed that the kinetic properties are compatible with this model. According to these findings, we can conclude that the sillenite BZO can be used as an efficient photocatalyst for wastewater treatment by eliminating both organic and inorganic compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA