RESUMO
Mitochondrial optic atrophy-1 (OPA1) plays key roles in adapting mitochondrial structure to bioenergetic function. When transmembrane potential across the inner membrane (Δψm) is intact, long (L-OPA1) isoforms shape the inner membrane through membrane fusion and the formation of cristal junctions. When Δψm is lost, however, OPA1 is cleaved to short, inactive S-OPA1 isoforms by the OMA1 metalloprotease, disrupting mitochondrial structure and priming cellular stress responses such as apoptosis. Previously, we demonstrated that L-OPA1 of H9c2 cardiomyoblasts is insensitive to loss of Δψm via challenge with the protonophore carbonyl cyanide chlorophenyl hydrazone (CCCP), but that CCCP-induced OPA1 processing is activated upon differentiation in media with low serum supplemented with all-trans retinoic acid (ATRA). Here, we show that this developmental induction of OPA1 processing in H9c2 cells is independent of ATRA; moreover, pretreatment of undifferentiated H9c2s with chloramphenicol (CAP), an inhibitor of mitochondrial protein synthesis, recapitulates the Δψm-sensitive OPA1 processing observed in differentiated H9c2s. L6.C11 and C2C12 myoblast lines display the same developmental and CAP-sensitive induction of OPA1 processing, demonstrating a general mechanism of OPA1 regulation in mammalian myoblast cell settings. Restoration of CCCP-induced OPA1 processing correlates with increased apoptotic sensitivity. Moreover, OPA1 knockdown indicates that intact OPA1 is necessary for effective myoblast differentiation. Taken together, our results indicate that a novel developmental mechanism acts to regulate OMA1-mediated OPA1 processing in myoblast cell lines, in which differentiation engages mitochondrial stress sensing.
Assuntos
Diferenciação Celular , GTP Fosfo-Hidrolases , Mioblastos , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/genética , Animais , Mioblastos/metabolismo , Linhagem Celular , Mitocôndrias/metabolismo , Ratos , CamundongosRESUMO
Glioblastoma is most commonly a primary brain tumor and the utmost malignant one, with a survival rate of approximately 12-18 months. Glioblastoma is highly heterogeneous, demonstrating that different types of cells from the same tumor can manifest distinct gene expression patterns and biological behaviors. Conventional therapies such as temozolomide, radiation, and surgery have limitations. As of now, there is no cure for glioblastoma. Alternative treatment methods to eradicate glioblastoma are discussed in this review, including targeted therapies to PI3K, NFKß, JAK-STAT, CK2, WNT, NOTCH, Hedgehog, and TGFß pathways. The highly novel application of oncolytic viruses and nanomaterials in combating glioblastoma are also discussed. Despite scores of clinical trials for glioblastoma, the prognosis remains poor. Progress in breaching the blood-brain barrier with nanomaterials and novel avenues for targeted and combination treatments hold promise for the future development of efficacious glioblastoma therapies.
RESUMO
Cancer cells often exhibit resistance to apoptotic cell death, but they may be vulnerable to other types of cell death. Elucidating additional mechanisms that govern cancer cell death is crucial for developing new therapies. Our research identified cyclic AMP-responsive element-binding protein 3 (CREB3) as a crucial regulator and initiator of a unique cell death mechanism known as karyoptosis. This process is characterized by nuclear shrinkage, deformation, and the loss of nuclear components following nuclear membrane rupture. We found that the N-terminal domain (aa 1-230) of full-length CREB3 (CREB3-FL), which is anchored to the nuclear inner membrane (INM), interacts with lamins and chromatin DNA. This interaction maintains a balance between the outward force exerted by tightly packed DNA and the inward constraining force, thereby preserving INM integrity. Under endoplasmic reticulum (ER) stress, aberrant cleavage of CREB3-FL at the INM leads to abnormal accumulation of the cleaved form of CREB3 (CREB3-CF). This accumulation disrupts the attachment of CREB3-FL to the INM, resulting in sudden rupture of the nuclear membrane and the onset of karyoptosis. Proteomic studies revealed that CREB3-CF overexpression induces a DNA damage response akin to that caused by UVB irradiation, which is associated with cellular senescence in cancer cells. These findings demonstrated that the dysregulation of CREB3-FL cleavage is a key factor in karyoptotic cell death. Consequently, these findings suggest new therapeutic strategies in cancer treatment that exploit the process of karyoptosis.
Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Membrana Nuclear , Proteômica , Apoptose , DNA , Membrana Nuclear/metabolismo , Humanos , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismoRESUMO
Basal-like breast cancer (BBC) and glioblastoma multiforme (GBM) are aggressive cancers associated with poor prognosis. BBC and GBM have stem cell-like gene expression signatures, which are in part driven by forkhead box O (FOXO) transcription factors. To gain further insight into the impact of FOXO1 in BBC, we treated BT549 cells with AS1842856 and performed RNA sequencing. AS1842856 binds to unphosphorylated FOXO1 and inhibits its ability to directly bind to DNA. Gene Set Enrichment Analysis indicated that a set of WNT pathway target genes, including lymphoid enhancer-binding factor 1 (LEF1) and transcription factor 7 (TCF7), were robustly induced after AS1842856 treatment. These same genes were also induced in GBM cell lines U87MG, LN18, LN229, A172, and DBTRG upon AS1842856 treatment. By contrast, follow-up RNA interference (RNAi) targeting of FOXO1 led to reduced LEF1 and TCF7 gene expression in BT549 and U87MG cells. In agreement with RNAi experiments, CRISPR Cas9-mediated FOXO1 disruption reduced the expression of canonical WNT genes LEF1 and TCF7 in U87MG cells. The loss of TCF7 gene expression in FOXO1 disruption mutants was restored by exogenous expression of the DNA-binding-deficient FOXO1-H215R. Therefore, FOXO1 induces TCF7 in a DNA-binding-independent manner, similar to other published FOXO1-activated genes such as TCF4 and hes family bHLH transcription factor 1. Our work demonstrates that FOXO1 promotes canonical WNT gene expression in examined BBC and GBM cells, similar to results found in Drosophila melanogaster, T-cell development, and murine acute myeloid leukemia models.
Assuntos
Drosophila melanogaster , Glioblastoma , Animais , Camundongos , Diferenciação Celular , DNA , Glioblastoma/genética , Células-Tronco , HumanosRESUMO
This study investigates the feasibility of centrifugal spinning for producing fibrous membranes containing pullulan, chitosan, and danshen extract. The danshen extract is composed of 20 wt% salvianolic acid B (SA). Citric acid was added to the mixture as a crosslinking agent to promote its use in the aqueous medium. The influence of the danshen concentration (25 wt% and 33 wt%) on fiber morphology, thermal behavior, and the biochemical effect was analyzed. Developed fiber-based membranes consist of long, continuous, and uniform fibers with a sparse scattering of beads. Fiber diameter analysis shows values ranging from 384 ± 123 nm to 644 ± 141 nm depending on the concentration of danshen. The nanofibers show adequate aqueous stability after crosslinking. Thermal analysis results prove that SA is loaded into nanofibers without compromising their structural integrity. Cell-based results indicate that the developed nanofiber membranes promote cell growth and are not detrimental to fibroblast cells. Anticancer studies reveal a promising inhibition to the proliferation of HCT116 colon cancer cells. The developed systems show potential as innovative systems to be used as a bioactive chemotherapeutic drug that could be placed on the removed tumor site to prevent development of colon cancer microdeposits.
RESUMO
This study focuses on the fabrication, characterization and anticancer properties of biocompatible and biodegradable composite nanofibers consisting of poly(vinyl alcohol) (PVA), oxymatrine (OM), and citric acid (CA) using a facile and high-yield centrifugal spinning process known as Forcespinning. The effects of varying concentrations of OM and CA on fiber diameter and molecular cross-linking are investigated. The morphological and thermo-physical properties, as well as water absorption of the developed nanofiber-based mats are characterized using microscopical analysis, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. In vitro anticancer studies are conducted with HCT116 colorectal cancer cells. Results show a high yield of long fibers embedded with beads. Fiber average diameters range between 462 and 528 nm depending on OM concentration. The thermal analysis results show that the fibers are stable at room temperature. The anticancer study reveals that PVA nanofiber membrane with high concentrations of OM can suppress the proliferation of HCT116 colorectal cancer cells. The study provides a comprehensive investigation of OM embedded into nanosized PVA fibers and the prospective application of these membranes as a drug delivery system.
Assuntos
Neoplasias Colorretais , Matrinas , Nanofibras , Humanos , Nanofibras/química , Álcool de Polivinil/farmacologia , Álcool de Polivinil/química , Alicerces Teciduais/química , Neoplasias Colorretais/tratamento farmacológicoRESUMO
Basal-like breast cancer (BBC) and glioblastoma multiforme (GBM) are poor-prognosis cancers that lack effective targeted therapies and harbor embryonic stem gene expression signatures. Recently, our group and others found that forkhead box transcription factor FOXO1 promotes stem gene expression in BBC and GBM cell lines. Given the critical role of cancer stem cells in promoting cancer progression, we examined the impact of FOXO1 inhibition with AS1842856 (a cell-permeable small molecule that directly binds to unphosphorylated FOXO1 protein to block transcriptional regulation) on BBC and GBM cell viability. We treated a set of BBC and GBM cancer cell lines with increasing concentrations of AS1842856 and found reduced colony formation. Treatment of BBC and GBM cancer cells with AS1842856 led to increases in FAS (FAS cell surface death receptor) and BIM (BCL2L11) gene expression, as well as increased positivity for markers for apoptosis such as annexin V and propidium iodide. Treatment with another FOXO1 inhibitor AS1708727 or FOXO1 RNAi also led to FAS induction. This work is the first to show that targeting BBC and GBM with FOXO1 inhibition leads to apoptosis. These novel findings may ultimately expand the repertoire of therapies for poor-prognosis cancers.
Assuntos
Neoplasias da Mama , Glioblastoma , Humanos , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Apoptose , Proteína Forkhead Box O1/genéticaRESUMO
Glioblastoma (GBM) is the most lethal primary brain cancer that lacks effective molecular targeted therapies. The PI3K/AKT/mTOR pathway is activated in 90% of all Glioblastoma multiforme (GBM) tumors. To gain insight into the impact of the PI3K pathway on GBM metabolism, we treated U87MG GBM cells with NVP-BEZ235 (PI3K and mTOR a dual inhibitor) and identified differentially expressed genes with RNA-seq analysis. RNA-seq identified 7803 differentially regulated genes in response to NVP-BEZ235. Gene Set Enrichment Analysis (GSEA) identified two glycolysis-related gene sets that were significantly enriched (p < 0.05) in control samples compared to NVP-BEZ235-treated samples. We validated the inhibition of glycolytic genes by NVP-BEZ235 and examined the impact of the FOXO1 inhibitor (AS1842856) on these genes in a set of GBM cell lines. FOXO1 inhibition alone was associated with reduced LDHA expression, but not ENO1 or PKM2. Bioinformatics analyses revealed that PI3K-impacted glycolytic genes were over-expressed and co-expressed in GBM clinical samples. The elevated expression of PI3K-impacted glycolytic genes was associated with poor prognosis in GBM based on Kaplan-Meier survival analyses. Our results suggest novel insights into hallmark metabolic reprogramming associated with the PI3K-mTOR dual inhibition.
Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Glicólise , Imidazóis/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Quinolinas/farmacologia , Transdução de Sinais , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Proteína Forkhead Box O1/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Glioblastoma/genética , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Glicólise/efeitos dos fármacos , Glicólise/genética , Humanos , Estimativa de Kaplan-Meier , Ácido Láctico/metabolismo , NAD/metabolismo , Prognóstico , Transdução de Sinais/efeitos dos fármacosRESUMO
Sea turtle fibropapillomatosis (FP) is a tumor promoting disease that is one of several threats globally to endangered sea turtle populations. The prevalence of FP is highest in green sea turtle (Chelonia mydas) populations, and historically has shown considerable temporal growth. FP tumors can significantly affect the ability of turtles to forage for food and avoid predation and can grow to debilitating sizes. In the current study, based in South Texas, we have applied transcriptome sequencing to FP tumors and healthy control tissue to study the gene expression profiles of FP. By identifying differentially expressed turtle genes in FP, and matching these genes to their closest human ortholog we draw on the wealth of human based knowledge, specifically human cancer, to identify new insights into the biology of sea turtle FP. We show that several genes aberrantly expressed in FP tumors have known tumor promoting biology in humans, including CTHRC1 and NLRC5, and provide support that disruption of the Wnt signaling pathway is a feature of FP. Further, we profiled the expression of current targets of immune checkpoint inhibitors from human oncology in FP tumors and identified potential candidates for future studies.
Assuntos
Perfilação da Expressão Gênica , Infecções por Herpesviridae/veterinária , Transcriptoma , Infecções Tumorais por Vírus/veterinária , Tartarugas/virologia , Fatores Etários , Animais , Infecções por Herpesviridae/epidemiologia , Infecções por Herpesviridae/virologia , Prevalência , Texas/epidemiologia , Infecções Tumorais por Vírus/virologiaRESUMO
Cancer cells almost universally harbor constitutively active Phosphatidylinositol-3 Kinase (PI3K) Pathway activity via mutation of key signaling components and/or epigenetic mechanisms. Scores of PI3K Pathway inhibitors are currently under investigation as putative chemotherapeutics. However, feedback and stem cell mechanisms induced by PI3K Pathway inhibition can lead to reduced treatment efficacy. To address therapeutic barriers, we examined whether JAKi would reduce stem gene expression in a setting of PI3K Pathway inhibition in order to improve treatment efficacy. We targeted the PI3K Pathway with NVP-BEZ235 (dual PI3K and mTOR inhibitor) in combination with the Janus Kinase inhibitor JAKi in glioblastoma (GBM) and basal-like breast cancer (BBC) cell lines. We examined growth, gene expression, and apoptosis in cells treated with NVP-BEZ235 and/or JAKi. Growth and recovery assays showed no significant impact of dual treatment with NVP-BEZ235/JAKi compared to NVP-BEZ235 treatment alone. Gene expression and flow cytometry revealed that single and dual treatments induced apoptosis. Stem gene expression was retained in dual NVP-BEZ235/JAKi treatment samples. Future in vivo studies may give further insight into the impact of combined NVP-BEZ235/JAKi treatment in GBM and BBC.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Imidazóis/farmacologia , Quinolinas/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Glioblastoma/patologia , Humanos , Imidazóis/uso terapêutico , Inibidores de Janus Quinases/farmacologia , Inibidores de Janus Quinases/uso terapêutico , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Quinolinas/uso terapêutico , Serina-Treonina Quinases TOR/antagonistas & inibidoresRESUMO
Optic atrophy-1 (OPA1) is a dynamin-like GTPase localized to the mitochondrial inner membrane, playing key roles in inner membrane fusion and cristae maintenance. OPA1 is regulated by the mitochondrial transmembrane potential (Δψm): when Δψm is intact, long OPA1 isoforms (L-OPA1) carry out inner membrane fusion. Upon loss of Δψm, L-OPA1 isoforms are proteolytically cleaved to short (S-OPA1) isoforms by the stress-inducible OMA1 metalloprotease, causing collapse of the mitochondrial network and promoting apoptosis. Here, we show that L-OPA1 isoforms of H9c2 cardiomyoblasts are retained under loss of Δψm, despite the presence of OMA1. However, when H9c2s are differentiated to a more cardiac-like phenotype via treatment with retinoic acid (RA) in low serum media, loss of Δ ψm induces robust, and reversible, cleavage of L-OPA1 and subsequent OMA1 degradation. These findings indicate that a potent developmental switch regulates Δ ψm-sensitive OPA1 cleavage, suggesting novel developmental and regulatory mechanisms for OPA1 homeostasis.
Assuntos
GTP Fosfo-Hidrolases/metabolismo , Metaloendopeptidases/genética , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/citologia , Tretinoína/farmacologia , Animais , Apoptose , Diferenciação Celular , Linhagem Celular Tumoral , Humanos , Potenciais da Membrana , Metaloendopeptidases/metabolismo , Camundongos , Membranas Mitocondriais/metabolismo , Miócitos Cardíacos/metabolismo , RatosRESUMO
Diabetic Retinopathy (DR) is a leading cause of blindness in the U.S. However, not much is known of underlying molecular mechanism and how oxidative stress contributes to its development. In the present study, we investigated the involvement of TGFß signaling pathway on the effect of oxidative stress on VEGF secretion and viability of retinal cells. VEGF is the hallmark that exacerbates DR progression in prolonged diabetes. Some major concerns that have arisen are the underlying effects of antioxidants in elevating VEGF secretion in diabetes. In this study, we evaluated how hypoxia (or low oxygen) impacts viability and VEGF secretion using 661W cone photoreceptor cells. Confluent 661W cells were grown in 5.5 mM normal or 30 mM high glucose, as well as subjected to CoCl2 to induce hypoxia. After treatment for 24 hours, conditioned media were collected for ELISA measurement to determine the amount of protein (VEGF) secretion. Viable cell numbers were also recorded. High glucose did not induce significant changes in viable cell number nor VEGF concentration in cell media. However, hypoxia condition resulted in a three-fold decrease in viable cell numbers and a three-fold increase in VEGF concentration. Furthermore, treatment with two TGFß inhibitors: SMAD 3, SIS (or Inhibitor 1) and TGFß receptor 1 kinase inhibitor (or Inhibitor 2) resulted in a reversal of hypoxia-induced changes. These results strongly suggest that TGFß signaling pathway mediates hypoxia-induced retinal cell viability and VEGF secretion. Further translational research studies will provide evidence to identify appropriate and effective pharmaceutical targets in this molecular pathway to mitigate the development of DR.
RESUMO
CRISPR Cas9 genome editing allows researchers to modify genes in a multitude of ways including to obtain deletions, epitope-tagged loci, and knock-in mutations. Within 6 years of its initial application, CRISPR-Cas9 genome editing has been widely employed, but disadvantages to this method, such as low modification efficiencies and off-target effects, need careful consideration. Obtaining custom donor vectors can also be expensive and time-consuming. This chapter details strategies to overcome barriers to CRISPR-Cas9 genome editing as well as recent developments in employing this technique.
Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Proteína 9 Associada à CRISPR/genética , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteína Forkhead Box O3/genética , Vetores Genéticos/genética , Humanos , Mutação , RNA Guia de Cinetoplastídeos/genéticaRESUMO
BACKGROUND: The PI3K pathway controls diverse cellular processes including growth, survival, metabolism, and apoptosis. Nuclear FOXO factors were observed in cancers that harbor constitutively active PI3K pathway output and stem signatures. FOXO1 and FOXO3 were previously published to induce stem genes such as OCT4 in embryonic stem cells. Here, we investigated FOXO-driven stem gene expression in U87MG glioblastoma cells. METHODS: PI3K-activated cancer cell lines were investigated for changes in gene expression, signal transduction, and clonogenicity under conditions with FOXO3 disruption or exogenous expression. The impact of PI3K pathway inhibition on stem gene expression was examined in a set of glioblastoma cell lines. RESULTS: We found that CRISPR-Cas9-mediated FOXO3 disruption in U87MG cells caused decreased OCT4 and SOX2 gene expression, STAT3 phosphorylation on tyrosine 705 and clonogenicity. FOXO3 over expression led to increased OCT4 in numerous glioblastoma cancer cell lines. Strikingly, treatment of glioblastoma cells with NVP-BEZ235 (a dual inhibitor of PI3K and mTOR), which activates FOXO factors, led to robust increases OCT4 gene expression. Direct FOXO factor recruitment to the OCT4 promoter was detected by chromatin immunoprecipitation analyses using U87MG extracts. DISCUSSION: We show for the first time that FOXO transcription factors promote stem gene expression glioblastoma cells. Treatment with PI3K inhibitor NVP-BEZ235 led to dramatic increases in stem genes in a set of glioblastoma cell lines. CONCLUSION: Given that, PI3K inhibitors are actively investigated as targeted cancer therapies, the FOXO-mediated induction of stem genes observed in this study highlights a potential hazard to PI3K inhibition. Understanding the molecular underpinnings of stem signatures in cancer will allow refinements to therapeutic strategies. Targeting FOXO factors to reduce stem cell characteristics in concert with PI3K inhibition may prove therapeutically efficacious.
Assuntos
Proteína Forkhead Box O3/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , HumanosRESUMO
BACKGROUND: Pseudomonas aeruginosa is an opportunistic multi-drug resistance pathogen implicated as the causative agent in a high-percentage of nosocomial and community acquired bacterial infections. The gene encoding leucyl-tRNA synthetase (LeuRS) from P. aeruginosa was overexpressed in Escherichia coli and the resulting protein was characterized. METHODS: LeuRS was kinetically evaluated and the KM values for interactions with leucine, ATP and tRNA were 6.5, 330, and 3.0 µM, respectively. LeuRS was developed into a screening platform using scintillation proximity assay (SPA) technology and used to screen over 2000 synthetic and natural chemical compounds. RESULTS: The initial screen resulted in the identification of two inhibitory compounds, BT03C09 and BT03E07. IC50s against LeuRS observed for BT03C09 and BT03E07 were 23 and 15 µM, respectively. The minimum inhibitory concentrations (MIC) were determined against nine clinically relevant bacterial strains. In time-kill kinetic analysis, BT03C09 was observed to inhibit bacterial growth in a bacteriostatic manner, while BT03E07 acted as a bactericidal agent. Neither compound competed with leucine or ATP for binding LeuRS. Limited inhibition was observed in aminoacylation assays with the human mitochondrial form of LeuRS, however when tested in cultures of human cell line, BT03C09 was toxic at all concentration whereas BT03E07 only showed toxic effects at elevated concentrations. CONCLUSION: Two compounds were identified as inhibitors of LeuRS in a screen of over 2000 natural and synthetic compounds. After characterization one compound (BT03E07) exhibited broad spectrum antibacterial activity while maintaining low toxicity against human mitochondrial LeuRS as well as against human cell cultures.
Assuntos
Aminoacil-tRNA Sintetases/antagonistas & inibidores , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Pseudomonas aeruginosa/efeitos dos fármacos , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/isolamento & purificação , Aminoacil-tRNA Sintetases/metabolismo , Antibacterianos/química , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Ensaios Enzimáticos , Ensaios de Triagem em Larga Escala , Humanos , Testes de Sensibilidade Microbiana , Infecções Oportunistas/tratamento farmacológico , Infecções Oportunistas/microbiologia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Testes de Toxicidade AgudaRESUMO
The original article [1] contains three erroneous mentions of usage of a restriction enzyme-BstZ17I-in the Methods section as displayed in the following sentences.
RESUMO
OBJECTIVE: To explore the impact of oxidative insults on mitochondrial dynamics. In mammalian cells, oxidative insults activate stress response pathways including inflammation, cytokine secretion, and apoptosis. Intriguingly, mitochondria are emerging as a sensitive network that may function as an early indicator of subsequent cellular stress responses. Mitochondria form a dynamic network, balancing fusion, mediated by optic atrophy-1 (OPA1), and fission events, mediated by dynamin-related protein-1 (DRP1), to maintain homeostasis. METHODS: Here, we examine the impact of oxidative insults on mitochondrial dynamics in 143B osteosarcoma and H9c2 cardiomyoblast cell lines via confocal microscopy, flow cytometry, and protein-based analyses. RESULTS: When challenged with hydrogen peroxide (H2O2), a ROS donor, both cell lines display fragmentation of the mitochondrial network and loss of fusion-active OPA1 isoforms, indicating that OPA1-mediated mitochondrial fusion is disrupted by oxidative damage in mammalian cells. Consistent with this, cells lacking OMA1, a key protease responsible for cleavage of OPA1, are protected against OPA1 cleavage and mitochondrial fragmentation in response to H2O2 challenge. DISCUSSION: Taken together, these findings indicate that oxidative insults damage OPA1-mediated mitochondrial dynamics in mammalian cells via activation of OMA1, consistent with an emerging role for mitochondrial dynamics as an early indicator of cellular stress signaling.
Assuntos
GTP Fosfo-Hidrolases/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Dinaminas , Citometria de Fluxo , GTP Fosfo-Hidrolases/genética , Humanos , Peróxido de Hidrogênio/farmacologia , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/genética , Proteínas Mitocondriais/genética , Estresse Oxidativo/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
BACKGROUND: Clustered regularly interspaced short palindromic repeat (CRISPR) RNA-guided adaptive immune systems are found in prokaryotes to defend cells from foreign DNA. CRISPR Cas9 systems have been modified and employed as genome editing tools in wide ranging organisms. Here, we provide a detailed protocol to truncate genes in mammalian cells using CRISPR Cas9 editing. We describe custom donor vector construction using Gibson assembly with the commonly utilized pcDNA3 vector as the backbone. RESULTS: We describe a step-by-step method to truncate genes of interest in mammalian cell lines using custom-made donor vectors. Our method employs 2 guide RNAs, mutant Cas9D10A nickase (Cas9 = CRISPR associated sequence 9), and a custom-made donor vector for homologous recombination to precisely truncate a gene of interest with a selectable neomycin resistance cassette (NPTII: Neomycin Phosphotransferase II). We provide a detailed protocol on how to design and construct a custom donor vector using Gibson assembly (and the commonly utilized pcDNA3 vector as the backbone) allowing researchers to obtain specific gene modifications of interest (gene truncation, gene deletion, epitope tagging or knock-in mutation). Selection of mutants in mammalian cell lines with G418 (Geneticin) combined with several screening methods: western blot analysis, polymerase chain reaction, and Sanger sequencing resulted in streamlined mutant isolation. Proof of principle experiments were done in several mammalian cell lines. CONCLUSIONS: Here we describe a detailed protocol to employ CRISPR Cas9 genome editing to truncate genes of interest using the commonly employed expression vector pcDNA3 as the backbone for the donor vector. Providing a detailed protocol for custom donor vector design and construction will enable researchers to develop unique genome editing tools. To date, detailed protocols for CRISPR Cas9 custom donor vector construction are limited (Lee et al. in Sci Rep 5:8572, 2015; Ma et al. in Sci Rep 4:4489, 2014). Custom donor vectors are commercially available, but can be expensive. Our goal is to share this protocol to aid researchers in performing genetic investigations that require custom donor vectors for specialized applications (specific gene truncations, knock-in mutations, and epitope tagging applications).
Assuntos
Sistemas CRISPR-Cas , Proteína Forkhead Box O3/genética , Edição de Genes/métodos , Plasmídeos/genética , Linhagem Celular , Desoxirribonuclease I/metabolismo , Vetores Genéticos , Células HEK293 , Recombinação Homóloga , Humanos , Masculino , Mutação , RNA Guia de Cinetoplastídeos/metabolismoRESUMO
The Lower Rio Grande Valley (LRGV) is located on U.S.-Mexican border with a population that is 90% Hispanic [1]. Comprised of Hidalgo, Cameron, Starr and Willacy counties, this region has the highest poverty rate and one of the highest incidences of Type 2 diabetes in the United States [2-4]. Previous studies demonstrated a high prevalence of Human Herpes Virus 8 (HHV8) in the LRGV [5-7]. HHV8 infection has been causally linked to Kaposi Sarcoma (KS) [8]. Here, we retrospectively examine the incidence of KS in the LRGV in a set of HIV-negative Hispanic patients. Strikingly, the incidence of KS was higher in LRGV women compared to the Texas state average (nearly four-fold higher in McAllen-Edinburg-Pharr Metro Statistical Area). This unique profile aligns with the increased HHV8 prevalence in the LRGV, suggesting that HHV8 contributes to a high incidence of HIV-negative KS on the U.S.-Mexican border in Texas.
RESUMO
Four inhibitory compounds were identified using a poly-uridylic acid (polyU) mRNA-directed aminoacylation/translation (A/T) protein synthesis system composed of phenylalanyl-tRNA synthetases (PheRS), ribosomes, and ribosomal factors from Pseudomonas aeruginosa in an in vitro screen of a synthetic compound library. The compounds were specific for inhibition of bacterial protein synthesis. In enzymatic assays, the compounds inhibited protein synthesis with IC50 values ranging from 20 to 60 µM. Minimum inhibitory concentrations (MICs) were determined in cultures for a panel of pathogenic organisms, including Enterococcus faecalis, Escherichia coli, Haemophilus influenzae, P. aeruginosa, Staphylococcus aureus, and Streptococcus pneumoniae. All the compounds were observed to have broad-spectrum activity and inhibited an efflux pump mutant strain of P. aeruginosa with MICs of 0.5-16 µg/mL. The molecular target of two compounds was determined to be PheRS. These two compounds were bacteriostatic against both Gram-positive and Gram-negative pathogens. In competition assays, they were not observed to compete with the natural substrates ATP or phenylalanine for active site binding. The other two compounds directly inhibited the ribosome and were bactericidal against both Gram-positive and Gram-negative pathogens. In cytotoxicity MTT testing in human cell lines, the compounds were shown to be from 2500- to 30,000-fold less active than the control staurosporine.