Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(20): 9084-9097, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38701516

RESUMO

Photochemical ligand release from metal complexes may be exploited in the development of novel photoactivated chemotherapy agents for the treatment of cancer and other diseases. Highly intriguing photochemical behavior is reported for two ruthenium(II) complexes bearing conformationally flexible 1,2,3-triazole-based ligands incorporating a methylene spacer to form 6-membered chelate rings. [Ru(bpy)2(pictz)]2+ (1) and [Ru(bpy)2(btzm)]2+ (2) (bpy = 2,2'-bipyridyl; pictz = 1-(picolyl)-4-phenyl-1,2,3-triazole; btzm = bis(4-phenyl-1,2,3-triazol-4-yl)methane) exhibit coordination by the triazole ring through the less basic N2 atom as a consequence of chelation and readily undergo photochemical release of the pictz and btzm ligands (ϕ = 0.079 and 0.091, respectively) in acetonitrile solution to form cis-[Ru(bpy)2(NCMe)2]2+ (3) in both cases. Ligand-loss intermediates of the form [Ru(bpy)2(κ1-pictz or κ1-btzm)(NCCD3)]2+ are detected by 1H NMR spectroscopy and mass spectrometry. Photolysis of 1 yields three ligand-loss intermediates with monodentate pictz ligands, two of which form through simple decoordination of either the pyridine or triazole donor with subsequent solvent coordination (4-tz(N2) and 4-py, respectively). The third intermediate, shown to be able to form photochemically directly from 1, arises through linkage isomerism in which the monodentate pictz ligand is coordinated by the triazole N3 atom (4-tz(N3)) with a comparable ligand-loss intermediate with an N3-bound κ1-btzm ligand also observed for 2.

2.
Chemistry ; 28(16): e202104461, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35102616

RESUMO

A photoswitchable ligand and palladium(II) ions form a dynamic mixture of self-assembled metallosupramolecular structures. The photoswitching ligand is an ortho-fluoroazobenzene with appended pyridyl groups. Combining the E-isomer with palladium(II) salts affords a double-walled triangle with composition [Pd3 L6 ]6+ and a distorted tetrahedron [Pd4 L8 ]8+ (1 : 2 ratio at 298 K). Irradiation with 410 nm light generates a photostationary state with approximately 80 % of the E-isomer of the ligand and results in the selective disassembly of the tetrahedron, the more thermodynamically stable structure, and the formation of the triangle, the more kinetically inert product. The triangle is then slowly transformed back into the tetrahedron over 2 days at 333 K. The Z-isomer of the ligand does not form any well-defined structures and has a thermal half-life of 25 days at 298 K. This approach shows how a thermodynamically preferred self-assembled structure can be reversibly pumped to a kinetic trap by small perturbations of the isomer distribution using non-destructive visible light.

3.
Chemistry ; 26(5): 1103-1110, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31729050

RESUMO

Three visible-light responsive photoswitches are reported, azobis(1-methyl-benzimidazole) (1), azobis(benzoxazole) (2) and azobis(benzothiazole) (3). Photostationary distributions are obtained upon irradiation with visible light comprising approximately 80 % of the thermally unstable isomer, with thermal half-lives up to 8 min and are mostly invariant to solvent. On protonation, compound 1H+ has absorption extending beyond 600 nm, allowing switching with yellow light, and a thermal half-life just under 5 minutes. The two isomers have significantly different pKa values, offering potential as a pH switch. The absorption spectra of 2 and 3 are insensitive to acid, although changes in the thermal half-life of 3 indicate more basic intermediates that significantly influence the thermal barrier to isomerization. These findings are supported by high-level ab initio calculations, which validate that protonation occurs on the ring nitrogen and that the Z isomer is more basic in all cases.

4.
Chemistry ; 25(22): 5708-5718, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30775812

RESUMO

The reaction of 4,4',4'',4'''-(ethene-1,1,2,2-tetrayl)tetraaniline with 2-pyridinecarboxaldehyde and iron(II) chloride resulted, after aqueous workup, in the diastereoselective formation of an [Fe2 L3 ]4+ triple-stranded helicate structure, irrespective of the stoichiometry employed. The helicate structure was characterized in solution by multinuclear NMR spectroscopy, and in the solid state by single-crystal X-ray crystallography. The reaction of iron(II) tetrafluoroborate or iron(II) bistriflimide with the tetraaniline and 2-pyridinecarboxaldehyde allowed the formation of an [Fe8 L6 ]16+ cube when the appropriate stoichiometry was used, but these structures were unstable with respect to hydrolysis. The pendant amine groups on the helicate can be functionalized by reaction with acid chlorides or anhydrides, and the resulting functionalized tetraphenylethene (TPE) units were isolated by the reaction of the helicate with tris(2-aminoethyl)amine. The emission properties of the TPE units were studied in THF/water mixtures, and they were found by dynamic light scattering to self-assemble into large (av. diameter 250 nm) structures.

5.
Chem Sci ; 9(43): 8242-8252, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30542573

RESUMO

The first in-depth, systematic study of the photoswitching properties of Donor-Acceptor Stenhouse Adducts (DASAs) is reported. Barbituric acid derived DASAs functionalised with 14 different amines ranging from dimethylamine to 4-methoxy-N-methylaniline were structurally characterised in solution using 1H and 13C NMR spectroscopy and, in eight cases, in the solid state by single crystal X-ray diffraction. The distribution of coloured and colourless isomers in the dark, their photostationary states under irradiation, apparent thermal half-lives, and fatigue resistance are systematically compared. A simple kinetic model is used to characterise photoswitching behaviour and reveals that minor structural modifications can significantly improve the photoswitching properties of DASA photochromes. These modifications result in excellent photoswitching properties for '1st generation' DASAs in chloroform, including exceptional fatigue resistance, opening the door for these photochromic molecules to find widespread applications.

6.
Inorg Chem ; 55(23): 12238-12253, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27934422

RESUMO

A new 2-pyridyl-1,2,3-triazole (pytri) ligand, TPA-pytri, substituted with a triphenylamine (TPA) donor group on the 5 position of the pyridyl unit was synthesized and characterized. Dichloroplatinum(II), bis(phenylacetylide)platinum(II), bromotricarbonylrhenium(I), and bis(bipyridyl)ruthenium(II) complexes of this ligand were synthesized and compared to complexes of pytri ligands without the TPA substituent. The complexes of unsubstituted pytri ligands show metal-to-ligand charge-transfer (MLCT) absorption bands involving the pytri ligand in the near-UV region. These transitions are complemented by intraligand charge-transfer (ILCT) bands in the TPA-pytri complexes, resulting in greatly improved visible absorption (λmax = 421 nm and ϵ = 19800 M-1 cm-1 for [Pt(TPA-pytri)Cl2]). The resonance Raman enhancement patterns allow for assignment of these absorption bands. The [Re(TPA-pytri)(CO)3Br] and [Pt(TPA-pytri)(CCPh)2] complexes were examined with time-resolved infrared spectroscopy. Shifts in the C≡C and C≡O stretching bands revealed that the complexes form states with increased electron density about their metal centers. [Pt(TPA-pytri)Cl2] is unusual in that it is emissive despite the presence of deactivating d-d states, which prevents emission from the unsubstituted pytri complex.

7.
Inorg Chem ; 54(4): 1572-87, 2015 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-25615621

RESUMO

Two inverse 2-pyridyl-1,2,3-triazole "click" ligands, 2-(4-phenyl-1H-1,2,3-triazol-1-yl)pyridine and 2-(4-benzyl-1H-1,2,3-triazol-1-yl)pyridine, and their palladium(II), platinum(II), rhenium(I), and ruthenium(II) complexes have been synthesized in good to excellent yields. The properties of these inverse "click" complexes have been compared to the isomeric regular compounds using a variety of techniques. X-ray crystallographic analysis shows that the regular and inverse complexes are structurally very similar. However, the chemical and physical properties of the isomers are quite different. Ligand exchange studies and density functional theory (DFT) calculations indicate that metal complexes of the regular 2-(1-R-1H-1,2,3-triazol-4-yl)pyridine (R = phenyl, benzyl) ligands are more stable than those formed with the inverse 2-(4-R-1H-1,2,3-triazol-1-yl)pyridine (R = phenyl, benzyl) "click" chelators. Additionally, the bis-2,2'-bipyridine (bpy) ruthenium(II) complexes of the "click" chelators have been shown to have short excited state lifetimes, which in the inverse triazole case, resulted in ejection of the 2-pyridyl-1,2,3-triazole ligand from the complex. Under identical conditions, the isomeric regular 2-pyridyl-1,2,3-triazole ruthenium(II) bpy complexes are photochemically inert. The absorption spectra of the inverse rhenium(I) and platinum(II) complexes are red-shifted compared to the regular compounds. It is shown that conjugation between the substituent group R and triazolyl unit has a negligible effect on the photophysical properties of the complexes. The inverse rhenium(I) complexes have large Stokes shifts, long metal-to-ligand charge transfer (MLCT) excited state lifetimes, and respectable quantum yields which are relatively solvent insensitive.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA