Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(44): e2210434119, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36282921

RESUMO

The cJun NH2-terminal kinase (JNK) signaling pathway in the liver promotes systemic changes in metabolism by regulating peroxisome proliferator-activated receptor α (PPARα)-dependent expression of the hepatokine fibroblast growth factor 21 (FGF21). Hepatocyte-specific gene ablation studies demonstrated that the Mapk9 gene (encoding JNK2) plays a key mechanistic role. Mutually exclusive inclusion of exons 7a and 7b yields expression of the isoforms JNK2α and JNK2ß. Here we demonstrate that Fgf21 gene expression and metabolic regulation are primarily regulated by the JNK2α isoform. To identify relevant substrates of JNK2α, we performed a quantitative phosphoproteomic study of livers isolated from control mice, mice with JNK deficiency in hepatocytes, and mice that express only JNK2α or JNK2ß in hepatocytes. We identified the JNK substrate retinoid X receptor α (RXRα) as a protein that exhibited JNK2α-promoted phosphorylation in vivo. RXRα functions as a heterodimeric partner of PPARα and may therefore mediate the effects of JNK2α signaling on Fgf21 expression. To test this hypothesis, we established mice with hepatocyte-specific expression of wild-type or mutated RXRα proteins. We found that the RXRα phosphorylation site Ser260 was required for suppression of Fgf21 gene expression. Collectively, these data establish a JNK-mediated signaling pathway that regulates hepatic Fgf21 expression.


Assuntos
Síndrome Metabólica , PPAR alfa , Animais , Camundongos , Proteínas de Transporte/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Síndrome Metabólica/metabolismo , Camundongos Knockout , Fosforilação , PPAR alfa/genética , PPAR alfa/metabolismo , Receptor X Retinoide alfa/genética , Receptor X Retinoide alfa/metabolismo , MAP Quinase Quinase 4/metabolismo
2.
Elife ; 92020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33287957

RESUMO

Liver metabolism follows diurnal fluctuations through the modulation of molecular clock genes. Disruption of this molecular clock can result in metabolic disease but its potential regulation by immune cells remains unexplored. Here, we demonstrated that in steady state, neutrophils infiltrated the mouse liver following a circadian pattern and regulated hepatocyte clock-genes by neutrophil elastase (NE) secretion. NE signals through c-Jun NH2-terminal kinase (JNK) inhibiting fibroblast growth factor 21 (FGF21) and activating Bmal1 expression in the hepatocyte. Interestingly, mice with neutropenia, defective neutrophil infiltration or lacking elastase were protected against steatosis correlating with lower JNK activation, reduced Bmal1 and increased FGF21 expression, together with decreased lipogenesis in the liver. Lastly, using a cohort of human samples we found a direct correlation between JNK activation, NE levels and Bmal1 expression in the liver. This study demonstrates that neutrophils contribute to the maintenance of daily hepatic homeostasis through the regulation of the NE/JNK/Bmal1 axis.


Every day, the body's biological processes work to an internal clock known as the circadian rhythm. This rhythm is controlled by 'clock genes' that are switched on or off by daily physical and environmental cues, such as changes in light levels. These daily rhythms are very finely tuned, and disturbances can lead to serious health problems, such as diabetes or high blood pressure. The ability of the body to cycle through the circadian rhythm each day is heavily influenced by the clock of one key organ: the liver. This organ plays a critical role in converting food and drink into energy. There is evidence that neutrophils ­ white blood cells that protect the body by being the first response to inflammation ­ can influence how the liver performs its role in obese people, by for example, releasing a protein called elastase. Additionally, the levels of neutrophils circulating in the blood change following a daily pattern. Crespo, González-Terán et al. wondered whether neutrophils enter the liver at specific times of the day to control liver's daily rhythm. Crespo, González-Terán et al. revealed that neutrophils visit the liver in a pattern that peaks when it gets light and dips when it gets dark by counting the number of neutrophils in the livers of mice at different times of the day. During these visits, neutrophils secreted elastase, which activated a protein called JNK in the cells of the mice's liver. This subsequently blocked the activity of another protein, FGF21, which led to the activation of the genes that allow cells to make fat molecules for storage. JNK activation also switched on the clock gene, Bmal1, ultimately causing fat to build up in the mice's liver. Crespo, González-Terán et al. also found that, in samples from human livers, the levels of elastase, the activity of JNK, and whether the Bmal1 gene was switched on were tightly linked. This suggests that neutrophils may be controlling the liver's rhythm in humans the same way they do in mice. Overall, this research shows that neutrophils can control and reset the liver's daily rhythm using a precisely co-ordinated series of molecular changes. These insights into the liver's molecular clock suggest that elastase, JNK and BmaI1 may represent new therapeutic targets for drugs or smart medicines to treat metabolic diseases such as diabetes or high blood pressure.


Assuntos
Proteínas CLOCK/metabolismo , Regulação da Expressão Gênica/fisiologia , Hepatócitos/metabolismo , Neutrófilos/fisiologia , Animais , Proteínas CLOCK/genética , Células Cultivadas , Ritmo Circadiano , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Inflamação/metabolismo , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Camundongos , Camundongos Transgênicos , Neutropenia
3.
Mol Syst Biol ; 15(8): e8849, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31464373

RESUMO

Obesity-associated type 2 diabetes and accompanying diseases have developed into a leading human health risk across industrialized and developing countries. The complex molecular underpinnings of how lipid overload and lipid metabolites lead to the deregulation of metabolic processes are incompletely understood. We assessed hepatic post-translational alterations in response to treatment of cells with saturated and unsaturated free fatty acids and the consumption of a high-fat diet by mice. These data revealed widespread tyrosine phosphorylation changes affecting a large number of enzymes involved in metabolic processes as well as canonical receptor-mediated signal transduction networks. Targeting two of the most prominently affected molecular features in our data, SRC-family kinase activity and elevated reactive oxygen species, significantly abrogated the effects of saturated fat exposure in vitro and high-fat diet in vivo. In summary, we present a comprehensive view of diet-induced alterations of tyrosine signaling networks, including proteins involved in fundamental metabolic pathways.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fígado/efeitos dos fármacos , Obesidade/metabolismo , Fosfotirosina/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Linhagem Celular Tumoral , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Modelos Animais de Doenças , Ácidos Graxos/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/etiologia , Obesidade/genética , Obesidade/patologia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteômica/métodos , Ratos , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Quinases da Família src/genética , Quinases da Família src/metabolismo
4.
J Immunol ; 202(3): 647-651, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30610162

RESUMO

Apoptosis of CD8 T cells is an essential mechanism that maintains immune system homeostasis, prevents autoimmunity, and reduces immunopathology. CD8 T cell death also occurs early during the response to both inflammation and costimulation blockade (CoB). In this article, we studied the effects of a combined deficiency of Fas (extrinsic pathway) and Bim (intrinsic pathway) on early T cell attrition in response to lymphocytic choriomeningitis virus infection and during CoB during transplantation. Loss of Fas and Bim function in Bcl2l11-/-Faslpr/lpr mice inhibited apoptosis of T cells and prevented the early T cell attrition resulting from lymphocytic choriomeningitis virus infection. Bcl2l11-/-Faslpr/lpr mice were also resistant to prolonged allograft survival induced by CoB targeting the CD40-CD154 pathway. These results demonstrate that both extrinsic and intrinsic apoptosis pathways function concurrently to regulate T cell homeostasis during the early stages of immune responses and allograft survival during CoB.


Assuntos
Apoptose , Proteína 11 Semelhante a Bcl-2/genética , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Inflamação/imunologia , Receptor fas/genética , Animais , Infecções por Arenaviridae/imunologia , Linfócitos T CD8-Positivos/virologia , Regulação da Expressão Gênica , Homeostase , Vírus da Coriomeningite Linfocítica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transplante de Pele
5.
J Neurosci ; 38(15): 3708-3728, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29540552

RESUMO

The c-Jun N-terminal kinase (JNK) signal transduction pathway is implicated in learning and memory. Here, we examined the role of JNK activation mediated by the JNK-interacting protein 1 (JIP1) scaffold protein. We compared male wild-type mice with a mouse model harboring a point mutation in the Jip1 gene that selectively blocks JIP1-mediated JNK activation. These male mutant mice exhibited increased NMDAR currents, increased NMDAR-mediated gene expression, and a lower threshold for induction of hippocampal long-term potentiation. The JIP1 mutant mice also displayed improved hippocampus-dependent spatial memory and enhanced associative fear conditioning. These results were confirmed using a second JIP1 mutant mouse model that suppresses JNK activity. Together, these observations establish that JIP1-mediated JNK activation contributes to the regulation of hippocampus-dependent, NMDAR-mediated synaptic plasticity and learning.SIGNIFICANCE STATEMENT The results of this study demonstrate that c-Jun N-terminal kinase (JNK) activation induced by the JNK-interacting protein 1 (JIP1) scaffold protein negatively regulates the threshold for induction of long-term synaptic plasticity through the NMDA-type glutamate receptor. This change in plasticity threshold influences learning. Indeed, mice with defects in JIP1-mediated JNK activation display enhanced memory in hippocampus-dependent tasks, such as contextual fear conditioning and Morris water maze, indicating that JIP1-JNK constrains spatial memory. This study identifies JIP1-mediated JNK activation as a novel molecular pathway that negatively regulates NMDAR-dependent synaptic plasticity and memory.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Plasticidade Neuronal , Memória Espacial , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células Cultivadas , Condicionamento Clássico , Hipocampo/citologia , Hipocampo/metabolismo , Hipocampo/fisiologia , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/fisiologia , Mutação Puntual , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
6.
Cell Rep ; 21(11): 3317-3328, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29241556

RESUMO

Obesity is a major human health crisis that promotes insulin resistance and, ultimately, type 2 diabetes. The molecular mechanisms that mediate this response occur across many highly complex biological regulatory levels that are incompletely understood. Here, we present a comprehensive molecular systems biology study of hepatic responses to high-fat feeding in mice. We interrogated diet-induced epigenomic, transcriptomic, proteomic, and metabolomic alterations using high-throughput omic methods and used a network modeling approach to integrate these diverse molecular signals. Our model indicated that disruption of hepatic architecture and enhanced hepatocyte apoptosis are among the numerous biological processes that contribute to early liver dysfunction and low-grade inflammation during the development of diet-induced metabolic syndrome. We validated these model findings with additional experiments on mouse liver sections. In total, we present an integrative systems biology study of diet-induced hepatic insulin resistance that uncovered molecular features promoting the development and maintenance of metabolic disease.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Hepatócitos/metabolismo , Fígado/metabolismo , Metaboloma/genética , Obesidade/genética , Transcriptoma , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Apoptose/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Hepatócitos/patologia , Hepatócitos/ultraestrutura , Insulina/metabolismo , Resistência à Insulina , Fígado/fisiopatologia , Fígado/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Mapeamento de Interação de Proteínas
7.
Sci Rep ; 7(1): 174, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28282965

RESUMO

Diet plays a crucial role in shaping human health and disease. Diets promoting obesity and insulin resistance can lead to severe metabolic diseases, while calorie-restricted (CR) diets can improve health and extend lifespan. In this work, we fed mice either a chow diet (CD), a 16 week high-fat diet (HFD), or a CR diet to compare and contrast the effects of these diets on mouse liver biology. We collected transcriptomic and epigenomic datasets from these mice using RNA-Seq and DNase-Seq. We found that both CR and HFD induce extensive transcriptional changes, in some cases altering the same genes in the same direction. We used our epigenomic data to infer transcriptional regulatory proteins bound near these genes that likely influence their expression levels. In particular, we found evidence for critical roles played by PPARα and RXRα. We used ChIP-Seq to profile the binding locations for these factors in HFD and CR livers. We found extensive binding of PPARα near genes involved in glycolysis/gluconeogenesis and uncovered a role for this factor in regulating anaerobic glycolysis. Overall, we generated extensive transcriptional and epigenomic datasets from livers of mice fed these diets and uncovered new functions and gene targets for PPARα.


Assuntos
Restrição Calórica/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Epigenômica/métodos , Perfilação da Expressão Gênica/métodos , Fígado/química , PPAR alfa/genética , Anaerobiose , Animais , Epigênese Genética , Regulação da Expressão Gênica , Glicólise , Masculino , Camundongos , Estado Nutricional , Análise de Sequência de DNA , Análise de Sequência de RNA
8.
Elife ; 5: e10031, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26910012

RESUMO

The cJun NH2-terminal kinase (JNK) signaling pathway is implicated in the response to metabolic stress. Indeed, it is established that the ubiquitously expressed JNK1 and JNK2 isoforms regulate energy expenditure and insulin resistance. However, the role of the neuron-specific isoform JNK3 is unclear. Here we demonstrate that JNK3 deficiency causes hyperphagia selectively in high fat diet (HFD)-fed mice. JNK3 deficiency in neurons that express the leptin receptor LEPRb was sufficient to cause HFD-dependent hyperphagia. Studies of sub-groups of leptin-responsive neurons demonstrated that JNK3 deficiency in AgRP neurons, but not POMC neurons, was sufficient to cause the hyperphagic response. These effects of JNK3 deficiency were associated with enhanced excitatory signaling by AgRP neurons in HFD-fed mice. JNK3 therefore provides a mechanism that contributes to homeostatic regulation of energy balance in response to metabolic stress.


Assuntos
Proteína Quinase 10 Ativada por Mitógeno/metabolismo , Neurônios/fisiologia , Estresse Fisiológico , Proteína Relacionada com Agouti/análise , Animais , Dieta Hiperlipídica , Hiperfagia , Camundongos , Camundongos Knockout , Proteína Quinase 10 Ativada por Mitógeno/deficiência
9.
Diabetes ; 64(9): 3172-81, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25931473

RESUMO

Understanding distinct gene expression patterns of normal adult and developing fetal human pancreatic α- and ß-cells is crucial for developing stem cell therapies, islet regeneration strategies, and therapies designed to increase ß-cell function in patients with diabetes (type 1 or 2). Toward that end, we have developed methods to highly purify α-, ß-, and δ-cells from human fetal and adult pancreata by intracellular staining for the cell-specific hormone content, sorting the subpopulations by flow cytometry, and, using next-generation RNA sequencing, we report the detailed transcriptomes of fetal and adult α- and ß-cells. We observed that human islet composition was not influenced by age, sex, or BMI, and transcripts for inflammatory gene products were noted in fetal ß-cells. In addition, within highly purified adult glucagon-expressing α-cells, we observed surprisingly high insulin mRNA expression, but not insulin protein expression. This transcriptome analysis from highly purified islet α- and ß-cell subsets from fetal and adult pancreata offers clear implications for strategies that seek to increase insulin expression in type 1 and type 2 diabetes.


Assuntos
Feto/citologia , Regulação da Expressão Gênica no Desenvolvimento , Células Secretoras de Glucagon/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , RNA/genética , Células Secretoras de Somatostatina/metabolismo , Adolescente , Adulto , Pré-Escolar , Feminino , Perfilação da Expressão Gênica , Humanos , Ilhotas Pancreáticas/citologia , Masculino , Pessoa de Meia-Idade , Gravidez , Segundo Trimestre da Gravidez , Análise de Sequência de RNA , Adulto Jovem
10.
J Biol Chem ; 290(24): 14875-83, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-25922079

RESUMO

Obesity and metabolic disorders such as insulin resistance and type 2 diabetes have become a major threat to public health globally. The mechanisms that lead to insulin resistance in type 2 diabetes have not been well understood. In this study, we show that mice deficient in MAPK phosphatase 5 (MKP5) develop insulin resistance spontaneously at an early stage of life and glucose intolerance at a later age. Increased macrophage infiltration in white adipose tissue of young MKP5-deficient mice correlates with the development of insulin resistance. Glucose intolerance in MKP5-deficient mice is accompanied by significantly increased visceral adipose weight, reduced AKT activation, enhanced p38 activity, and increased inflammation in visceral adipose tissue when compared with wild-type (WT) mice. Deficiency of MKP5 resulted in increased inflammatory activation in macrophages. These findings thus demonstrate that MKP5 critically controls inflammation in white adipose tissue and the development of metabolic disorders.


Assuntos
Tecido Adiposo/patologia , Inflamação/enzimologia , Resistência à Insulina , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Tecido Adiposo/enzimologia , Animais , Glucose/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética
11.
Cell Rep ; 5(1): 259-70, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24095730

RESUMO

Diet-induced obesity (DIO) predisposes individuals to insulin resistance, and adipose tissue has a major role in the disease. Insulin resistance can be induced in cultured adipocytes by a variety of treatments, but what aspects of the in vivo responses are captured by these models remains unknown. We use global RNA sequencing to investigate changes induced by TNF-α, hypoxia, dexamethasone, high insulin, and a combination of TNF-α and hypoxia, comparing the results to the changes in white adipose tissue from DIO mice. We found that different in vitro models capture distinct features of DIO adipose insulin resistance, and a combined treatment of TNF-α and hypoxia is most able to mimic the in vivo changes. Using genome-wide DNase I hypersensitivity followed by sequencing, we further examined the transcriptional regulation of TNF-α-induced insulin resistance, and we found that C/EPBß is a potential key regulator of adipose insulin resistance.


Assuntos
Tecido Adiposo/metabolismo , Resistência à Insulina/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos
12.
Mol Cell Biol ; 31(7): 1565-76, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21282468

RESUMO

The c-Jun NH(2)-terminal kinase (JNK) signal transduction pathway causes increased gene expression mediated, in part, by members of the activating transcription factor protein (AP1) group. JNK is therefore implicated in the regulation of cell growth and cancer. To test the role of JNK in Ras-induced tumor formation, we examined the effect of compound ablation of the ubiquitously expressed genes Jnk1 plus Jnk2. We report that JNK is required for Ras-induced transformation of p53-deficient primary cells in vitro. Moreover, JNK is required for lung tumor development caused by mutational activation of the endogenous KRas gene in vivo. Together, these data establish that JNK plays a key role in Ras-induced tumorigenesis.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Lesões Pré-Cancerosas/enzimologia , Lesões Pré-Cancerosas/patologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Apoptose , Caderinas/metabolismo , Proliferação de Células , Transformação Celular Neoplásica/patologia , Inibição de Contato , Fibroblastos/metabolismo , Camundongos , Transdução de Sinais , Estresse Fisiológico , Ensaio Tumoral de Célula-Tronco , Proteína Supressora de Tumor p53/metabolismo
13.
Mol Cell Biol ; 30(1): 106-15, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19841069

RESUMO

Obesity caused by feeding of a high-fat diet (HFD) is associated with an increased activation of c-Jun NH(2)-terminal kinase 1 (JNK1). Activated JNK1 is implicated in the mechanism of obesity-induced insulin resistance and the development of metabolic syndrome and type 2 diabetes. Significantly, Jnk1(-)(/)(-) mice are protected against HFD-induced obesity and insulin resistance. Here we show that an ablation of the Jnk1 gene in skeletal muscle does not influence HFD-induced obesity. However, muscle-specific JNK1-deficient (M(KO)) mice exhibit improved insulin sensitivity compared with control wild-type (M(WT)) mice. Thus, insulin-stimulated AKT activation is suppressed in muscle, liver, and adipose tissue of HFD-fed M(WT) mice but is suppressed only in the liver and adipose tissue of M(KO) mice. These data demonstrate that JNK1 in muscle contributes to peripheral insulin resistance in response to diet-induced obesity.


Assuntos
Resistência à Insulina , Proteína Quinase 8 Ativada por Mitógeno/fisiologia , Músculo Esquelético/enzimologia , Obesidade/fisiopatologia , Animais , Gorduras na Dieta , Camundongos , Camundongos Knockout , Proteína Quinase 8 Ativada por Mitógeno/genética , Obesidade/enzimologia , Obesidade/etiologia , Especificidade de Órgãos , Transdução de Sinais
14.
Mol Cell Biol ; 29(17): 4831-40, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19564410

RESUMO

Scaffold proteins have been established as important mediators of signal transduction specificity. The insulin receptor substrate (IRS) proteins represent a critical group of scaffold proteins that are required for signal transduction by the insulin receptor, including the activation of phosphatidylinositol 3 kinase. The c-Jun NH(2)-terminal kinase (JNK)-interacting proteins (JIPs) represent a different group of scaffold molecules that are implicated in the regulation of the JNK. These two signaling pathways are functionally linked because JNK can phosphorylate IRS1 on the negative regulatory site Ser-307. Here we demonstrate the physical association of these signaling pathways using a proteomic approach that identified insulin-regulated complexes of JIPs together with IRS scaffold proteins. Studies using mice with JIP scaffold protein defects confirm that the JIP1 and JIP2 proteins are required for normal glucose homeostasis. Together, these observations demonstrate that JIP proteins can influence insulin-stimulated signal transduction mediated by IRS proteins.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Transdução de Sinais/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular Tumoral , Análise Mutacional de DNA , Gorduras na Dieta , Ativação Enzimática , Glucose/metabolismo , Humanos , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Pâncreas/ultraestrutura , Fosfatidilinositol 3-Quinases/metabolismo , Mutação Puntual , Proteoma/análise
15.
Genes Dev ; 21(18): 2336-46, 2007 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-17875667

RESUMO

JIP scaffold proteins are implicated in the regulation of protein kinase signal transduction pathways. To test the physiological role of these scaffold proteins, we examined the phenotype of compound mutant mice that lack expression of JIP proteins. These mice were found to exhibit severe defects in N-methyl-D-aspartic acid (NMDA) receptor function, including decreased NMDA-evoked current amplitude, cytoplasmic Ca(++), and gene expression. The decreased NMDA receptor activity in JIP-deficient neurons is associated with reduced tyrosine phosphorylation of NR2 subunits of the NMDA receptor. JIP complexes interact with the SH2 domain of cFyn and may therefore promote tyrosine phosphorylation and activity of the NMDA receptor. We conclude that JIP scaffold proteins are critically required for normal NMDA receptor function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , N-Metilaspartato/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células COS , Cerebelo/embriologia , Cerebelo/metabolismo , Chlorocebus aethiops , Cinesinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Fosforilação , Proteínas Tirosina Quinases/metabolismo , Receptores de N-Metil-D-Aspartato/fisiologia , Transdução de Sinais/genética
16.
Cancer Cell ; 11(6): 555-69, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17560336

RESUMO

Although most oncogenic phenotypes of PTEN loss are attributed to AKT activation, AKT alone is not sufficient to induce all of the biological activities associated with PTEN inactivation. We searched for additional PTEN-regulated pathways through gene set enrichment analysis (GSEA) and identified genes associated with JNK activation. PTEN null cells exhibit higher JNK activity, and genetic studies demonstrate that JNK functions parallel to and independently of AKT. Furthermore, PTEN deficiency sensitizes cells to JNK inhibition and negative feedback regulation of PI3K was impaired in PTEN null cells. Akt and JNK activation are highly correlated in human prostate cancer. These findings implicate JNK in PI3K-driven cancers and demonstrate the utility of GSEA to identify functional pathways using genetically defined systems.


Assuntos
Transformação Celular Neoplásica , Perfilação da Expressão Gênica , Genes Supressores de Tumor , PTEN Fosfo-Hidrolase/metabolismo , Transdução de Sinais , Animais , Ativação Enzimática , Retroalimentação Fisiológica , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Camundongos Knockout , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
17.
Cancer Cell ; 11(2): 101-3, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17292820

RESUMO

It is established that p38 MAPK can negatively regulate tumorigenesis, but the mechanism is incompletely understood. A new study in this issue of Cancer Cell shows that p38 MAP kinase plays a selective role in tumor initiation mediated by oxidative stress.


Assuntos
Transformação Celular Neoplásica , Proteína Quinase 14 Ativada por Mitógeno/fisiologia , Neoplasias/enzimologia , Estresse Oxidativo , Animais , Apoptose , Humanos , Proteína Quinase 14 Ativada por Mitógeno/genética , Neoplasias/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
18.
Genes Dev ; 20(19): 2701-12, 2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17015432

RESUMO

Cytoplasmic polyadenylation element-binding protein (CPEB) is a sequence-specific RNA-binding protein that promotes polyadenylation-induced translation. While a CPEB knockout (KO) mouse is sterile but overtly normal, embryo fibroblasts derived from this mouse (MEFs) do not enter senescence in culture as do wild-type MEFs, but instead are immortal. Exogenous CPEB restores senescence in the KO MEFs and also induces precocious senescence in wild-type MEFs. CPEB cannot stimulate senescence in MEFs lacking the tumor suppressors p53, p19ARF, or p16(INK4A); however, the mRNAs encoding these proteins are unlikely targets of CPEB since their expression is the same in wild-type and KO MEFs. Conversely, Ras cannot induce senescence in MEFs lacking CPEB, suggesting that it may lie upstream of CPEB. One target of CPEB regulation is myc mRNA, whose unregulated translation in the KO MEFs may cause them to bypass senescence. Thus, CPEB appears to act as a translational repressor protein to control myc translation and resulting cellular senescence.


Assuntos
Senescência Celular/fisiologia , Proteínas de Ligação a RNA/fisiologia , Animais , Western Blotting/métodos , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/farmacologia , Proteína Supressora de Tumor p14ARF/genética , Proteína Supressora de Tumor p14ARF/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
19.
Nature ; 430(7001): 793-7, 2004 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-15306813

RESUMO

Mitogen-activated protein (MAP) kinases are essential regulators in immune responses, and their activities are modulated by kinases and phosphatases. MAP kinase phosphatase (MKP) is a family of dual-specificity phosphatases whose function is evolutionarily conserved. A number of mammalian MKPs have been identified so far, but their specific physiological functions in negative regulation of MAP kinases have not been genetically defined. Here we examine innate and adaptive immune responses in the absence of MKP5. JNK activity was selectively increased in Mkp5 (also known as Dusp10)-deficient mouse cells. Mkp5-deficient cells produced greatly enhanced levels of pro-inflammatory cytokines during innate immune responses and exhibited greater T-cell activation than their wild-type counterparts. However, Mkp5-deficient T cells proliferated poorly upon activation, which resulted in increased resistance to experimental autoimmune encephalomyelitis. By contrast, Mkp5-deficient CD4(+) and CD8(+) effector T cells produced significantly increased levels of cytokines compared with wild-type cells, which led to much more robust and rapidly fatal immune responses to secondary infection with lymphocytic choriomeningitis virus. Therefore, MKP5 has a principal function in both innate and adaptive immune responses, and represents a novel target for therapeutic intervention of immune diseases.


Assuntos
Imunidade Inata/imunologia , Imunidade/imunologia , Macrófagos Peritoneais/enzimologia , Macrófagos Peritoneais/imunologia , Proteínas Tirosina Fosfatases/metabolismo , Linfócitos T/enzimologia , Linfócitos T/imunologia , Animais , Divisão Celular/efeitos dos fármacos , Células Cultivadas , Fosfatases de Especificidade Dupla , Encefalomielite Autoimune Experimental , Deleção de Genes , Humanos , Interleucina-6/biossíntese , Interleucina-6/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Quinases JNK Ativadas por Mitógeno , Células Jurkat , Lipopolissacarídeos/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Vírus da Coriomeningite Linfocítica/fisiologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Knockout , Fosfatases da Proteína Quinase Ativada por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Tirosina Fosfatases/genética , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/metabolismo
20.
Mol Cell ; 15(2): 269-78, 2004 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-15260977

RESUMO

The c-Jun NH2-terminal kinase (JNK) has been implicated in the function of transforming growth factor beta (TGF-beta). To test the role of JNK, we examined the effect of compound disruption of the murine genes that encode the ubiquitously expressed isoforms of JNK (Jnk1 and Jnk2). We report that JNK-deficient fibroblasts isolated from Jnk1-/- Jnk2-/- mice constitutively express TGF-beta1. Complementation studies demonstrate that JNK is a repressor of Tgf-beta1 gene expression. This mechanism of regulation of TGF-beta1 expression by JNK represents an unexpected form of cross-talk between two important signaling pathways. Together, these data demonstrate that the JNK pathway may contribute to the regulation of autocrine TGF-beta1-mediated biological responses in vivo.


Assuntos
Comunicação Autócrina , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Receptores de Ativinas Tipo I/antagonistas & inibidores , Receptores de Ativinas Tipo I/genética , Animais , Bromodesoxiuridina , Ciclo Celular , Divisão Celular , Movimento Celular , Ensaio de Desvio de Mobilidade Eletroforética , Perfilação da Expressão Gênica , Genes Dominantes , Homozigoto , Proteínas Quinases JNK Ativadas por Mitógeno , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Nus , Proteínas Quinases Ativadas por Mitógeno/genética , Invasividade Neoplásica , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases , Receptor Cross-Talk , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Receptores de Fatores de Crescimento Transformadores beta/genética , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta1 , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA