Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS One ; 19(5): e0303449, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38768097

RESUMO

Candida albicans (C. albicans) can behave as a commensal yeast colonizing the vaginal mucosa, and in this condition is tolerated by the epithelium. When the epithelial tolerance breaks down, due to C. albicans overgrowth and hyphae formation, the generated inflammatory response and cell damage lead to vulvovaginal candidiasis (VVC) symptoms. Here, we focused on the induction of mitochondrial reactive oxygen species (mtROS) in vaginal epithelial cells after C. albicans infection and the involvement of fungal burden, morphogenesis and candidalysin (CL) production in such induction. Bioluminescent (BLI) C. albicans, C. albicans PCA-2 and C. albicans 529L strains were employed in an in vitro infection model including reconstituted vaginal epithelium cells (RVE), produced starting from A-431 cell line. The production of mtROS was kinetically measured by using MitoSOX™ Red probe. The potency of C. albicans to induced cell damage to RVE and C. albicans proliferation have also been evaluated. C. albicans induces a rapid mtROS release from vaginal epithelial cells, in parallel with an increase of the fungal load and hyphal formation. Under the same experimental conditions, the 529L C. albicans strain, known to be defective in CL production, induced a minor mtROS release showing the key role of CL in causing epithelial mithocondrial activation. C. albicans PCA-2, unable to form hyphae, induced comparable but slower mtROS production as compared to BLI C. albicans yeasts. By reducing mtROS through a ROS scavenger, an increased fungal burden was observed during RVE infection but not in fungal cultures grown on abiotic surface. Collectively, we conclude that CL, more than fungal load and hyphae formation, seems to play a key role in the rapid activation of mtROS by epithelial cells and in the induction of cell-damage and that mtROS are key elements in the vaginal epithelial cells response to C. albicans.


Assuntos
Candida albicans , Candidíase Vulvovaginal , Células Epiteliais , Proteínas Fúngicas , Mitocôndrias , Espécies Reativas de Oxigênio , Vagina , Candida albicans/metabolismo , Candida albicans/fisiologia , Feminino , Humanos , Mitocôndrias/metabolismo , Vagina/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/metabolismo , Proteínas Fúngicas/metabolismo , Candidíase Vulvovaginal/microbiologia , Hifas/metabolismo , Hifas/crescimento & desenvolvimento , Linhagem Celular
2.
Microorganisms ; 12(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38674606

RESUMO

Lactic acid bacteria are considered an inexhaustible source of bioactive compounds; indeed, products from their metabolism are known to have immunomodulatory and anti-inflammatory activity. Recently, we demonstrated that Cell-Free Supernatants (CFS) obtained from Lactobacillus (L.) acidophilus, Lactiplantibacillus (L.) plantarum, Lacticaseibacillus (L.) rhamnosus, and Limosilactobacillus (L.) reuteri can impair Candida pathogenic potential in an in vitro model of epithelial vaginal infection. This effect could be ascribed to a direct effect of living lactic acid bacteria on Candida virulence and to the production of metabolites that are able to impair fungal virulence. In the present work, stemming from these data, we deepened our knowledge of CFS from these four lactic acid bacteria by performing a metabolomic analysis to better characterize their composition. By using an untargeted metabolomic approach, we detected consistent differences in the metabolites produced by these four different lactic acid bacteria. Interestingly, L. rhamnosus and L. acidophilus showed the most peculiar metabolic profiles. Specifically, after a hierarchical clustering analysis, L. rhamnosus and L. acidophilus showed specific areas of significantly overexpressed metabolites that strongly differed from the same areas in other lactic acid bacteria. From the overexpressed compounds in these areas, inosine from L. rhamnosus returned with the best identification profile. This molecule has been described as having antioxidant, anti-inflammatory, anti-infective, and neuroprotective properties. The biological significance of its overproduction by L. rhamnosus might be important in its probiotic and/or postbiotic activity.

3.
Antibiotics (Basel) ; 11(2)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35203859

RESUMO

Candidiasis is common in diabetic patients. Complement evasion is facilitated by binding complement factor H (FH). Since the expression of high-affinity glucose transporter 1 (Hgt1), a FH-binding molecule, is glucose-dependent, we aimed to study its relevance to the pathogenesis of Candida albicans. Euglycemic and diabetic mice were intravenously challenged with either Candida albicans lacking Hgt1 (hgt1-/-) or its parental strain (SN152). Survival and clinical status were monitored over 14 days. In vitro, Candida albicans strains were grown at different glucose concentrations, opsonized with human serum, and checked for C3b/iC3b and FH deposition. Phagocytosis was studied by fluorescein isothiocyanate-labeled opsonized yeast cells incubated with granulocytes. The murine model demonstrated a significantly higher virulence of SN152 in diabetic mice and an overall increased lethality of mice challenged with hgt1-/-. In vitro lower phagocytosis and C3b/iC3b deposition and higher FH deposition were demonstrated for SN152 incubated at higher glucose concentrations, while there was no difference on hgt1-/- at physiological glucose concentrations. Despite C3b/iC3b and FH deposition being glucose-dependent, this effect has a minor influence on phagocytosis. The absence of Hgt1 is diminishing this dependency on complement deposition, but it cannot be attributed to being beneficial in a murine model.

4.
J Invest Dermatol ; 142(10): 2715-2723.e2, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35007559

RESUMO

Epidermolysis bullosa acquisita (EBA) is a rare blistering skin disease induced by autoantibodies directed against type VII collagen. The transfer of antibodies against murine type VII collagen into mice mimics the effector phase of EBA and results in a subepidermal blistering phenotype. Activation of the complement system, and especially the C5a/C5aR1 axis driving neutrophil activation, is critical for EBA pathogenesis. However, the role of the alternative C5a receptor, C5aR2, which is commonly thought to be more immunosuppressive, in the pathogenesis of EBA is still elusive. Therefore, we sought to delineate the functional relevance of C5aR2 during the effector phase of EBA. Interestingly, C5ar2-/- mice showed an attenuated disease phenotype, suggesting a pathogenic contribution of C5aR2 in disease progression. In vitro, C5ar2-/- neutrophils exhibited significantly reduced intracellular calcium flux, ROS release, and migratory capacity when activated with immune complexes or exposed to C5a. These functions were completely absent when C5ar1-/- neutrophils were activated. Moreover, C5aR2 deficiency lowered the ratio of activating and inhibitory FcγRs, impeding the sustainment of inflammation. Collectively, we show here a proinflammatory contribution of C5aR2 in the pathogenesis of antibody-induced tissue damage in experimental EBA.


Assuntos
Epidermólise Bolhosa Adquirida , Animais , Complexo Antígeno-Anticorpo , Autoanticorpos , Cálcio/metabolismo , Colágeno Tipo VII/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Camundongos , Neutrófilos , Espécies Reativas de Oxigênio/metabolismo , Receptor da Anafilatoxina C5a/genética , Receptor da Anafilatoxina C5a/metabolismo , Receptores de IgG/genética , Receptores de IgG/metabolismo
5.
J Invest Dermatol ; 141(2): 285-294, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32653301

RESUMO

The major histocompatibility complex haplotype represents the most prevalent genetic risk factor for the development of autoimmune diseases. However, the mechanisms by which major histocompatibility complex-associated genetic susceptibility translates into autoimmune disease are not fully understood. Epidermolysis bullosa acquisita is an autoimmune skin-blistering disease driven by autoantibodies to type VII collagen. Here, we investigated autoantigen-specific plasma cells, CD4+ T cells, and IgG fraction crystallizable glycosylation in murine epidermolysis bullosa acquisita in congenic mouse strains with the disease-permitting H2s or disease-nonpermitting H2b major histocompatibility complex II haplotypes. Mice with an H2s haplotype showed increased numbers of autoreactive CD4+ T cells and elevated IL-21 and IFN-γ production, associated with a higher frequency of IgG autoantibodies with an agalactosylated, proinflammatory N-glycan moiety. Mechanistically, we show that the altered antibody glycosylation leads to increased ROS release from neutrophils, the main drivers of autoimmune inflammation in this model. These results indicate that major histocompatibility complex II-associated susceptibility to autoimmune diseases acuminates in a proinflammatory IgG fraction crystallizable N-glycosylation pattern and provide a mechanistic link to increased ROS release by neutrophils.


Assuntos
Doenças Autoimunes/etiologia , Haplótipos , Antígenos de Histocompatibilidade Classe II/genética , Imunoglobulina G/fisiologia , Dermatopatias/etiologia , Animais , Autoanticorpos/sangue , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Citocinas/análise , Glicosilação , Imunoglobulina G/sangue , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Dermatopatias/genética , Dermatopatias/imunologia , Linfócitos T Reguladores/imunologia
6.
Toxins (Basel) ; 13(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374102

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) infections can cause EHEC-associated hemolytic uremic syndrome (eHUS) via its main virulent factor, Shiga toxins (Stxs). Complement has been reported to be involved in the progression of eHUS. The aim of this study was to investigate the interactions of the most effective subtype of the toxin, Stx2a, with pivotal complement proteins C3b and C5. The study further examined the effect of Stx2a stimulation on the transcription and synthesis of these complement proteins in human target cell lines. Binding of Stx2a to C3b and C5 was evaluated by ELISA. Kidney and gut cell lines (HK-2 and HCT-8) were stimulated with varied concentrations of Stx2a. Subsequent evaluation of complement gene transcription was studied by real-time PCR (qPCR), and ELISAs and Western blots were performed to examine protein synthesis of C3 and C5 in supernatants and lysates of stimulated HK-2 cells. Stx2a showed a specific binding to C3b and C5. Gene transcription of C3 and C5 was upregulated with increasing concentrations of Stx2a in both cell lines, but protein synthesis was not. This study demonstrates the binding of Stx2a to complement proteins C3b and C5, which could potentially be involved in regulating complement during eHUS infection, supporting further investigations into elucidating the role of complement in eHUS pathogenesis.


Assuntos
Complemento C3b/química , Complemento C5/química , Regulação da Expressão Gênica/efeitos dos fármacos , Toxina Shiga/química , Toxina Shiga/farmacologia , Linhagem Celular , Sobrevivência Celular , Humanos , Ligação Proteica , Regulação para Cima/efeitos dos fármacos
7.
Front Microbiol ; 9: 3319, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30697200

RESUMO

Complement is a tightly controlled arm of the innate immune system, facilitating phagocytosis and killing of invading pathogens. Factor H (FH) is the main fluid-phase inhibitor of the alternative pathway. Many pathogens can hijack FH from the host and protect themselves from complement-dependent killing. Candida albicans is a clinically important opportunistic yeast, expressing different FH binding molecules on its cell surface, which allow complement evasion. One such FH binding molecule is the transmembrane protein "High affinity glucose transporter 1" (Hgt1p), involved in glucose metabolism. This study demonstrated that Hgt1p transcription and expression is induced and highest at the low, but physiological glucose concentration of 0.1%. Thus, this concentration was used throughout the study. We also demonstrated the transport of Hgt1p to the fungal cell wall surface by vesicle trafficking and its release by exosomes containing Hgt1p integrated in the vesicular membrane. We corroborated Hgt1p as FH binding molecule. A polyclonal anti-Hgt1p antibody was created which interfered with the binding of FH, present in normal human serum to the fungal cell wall. A chimeric molecule consisting of FH domains 6 and 7 fused to human IgG1 Fc (FH6.7/Fc) even more comprehensively blocked FH binding, likely because FH6.7/Fc diverted FH away from fungal FH ligands other than Hgt1p. Reduced FH binding to the yeast was associated with a concomitant increase in C3b/iC3b deposition and resulted in significantly increased in vitro phagocytosis and killing by human neutrophils. In conclusion, Hgt1p also exhibits non-canonical functions such as binding FH after its export to the cell wall. Blocking Hgt1p-FH interactions may represent a tool to enhance complement activation on the fungal surface to promote phagocytosis and killing of C. albicans.

8.
Front Microbiol ; 7: 879, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27375599

RESUMO

Neutrophil extracellular traps (NETs) are a combination of DNA fibers and granular enzymes, such as elastase and myeloperoxidase. In this study, we demonstrate that Candida albicans hyphal (CAH) cells and yeast (CAY) cells induce differential amounts, kinetics and mechanisms of NET release. CAH cells induced larger quantities of NET compared to CAY cells and can stimulate rapid NET formation up to 4 h of incubation. CAY cells are, also, able to induce rapid NET formation, but this ability was lost at 4 h. Both reactive oxygen species (ROS) and autophagy are implicated in NET induced by CAH and CAY cells, but with a time-different participation of these two mechanisms. In particular, in the early phase (15 min) CAH cells stimulate NET via autophagy, but not via ROS, while CAY cells induce NET via both autophagy and ROS. At 4 h, only CAH cells stimulate NET formation using autophagy as well as ROS. Finally, we demonstrate that NET release, in response to CAH cells, involves NF-κB activation and is strongly implicated in hyphal destruction.

9.
Future Microbiol ; 8(9): 1107-16, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24020739

RESUMO

The encapsulated fungal pathogen Cryptococcus neoformans represents a significant agent of life-threatening infections in immunocompromised subjects. A unique characteristic of Cryptococcus species is the presence of a polysaccharide capsule, which is essential for virulence and endows Cryptococcus with potent immunoregulatory properties. This review provides an overview of the immunological properties of the principal components of C. neoformans capsule.


Assuntos
Cryptococcus neoformans/imunologia , Polissacarídeos/imunologia , Humanos , Fatores Imunológicos , Fatores de Virulência/imunologia
10.
Virulence ; 4(3): 250-4, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23334179

RESUMO

Oropharyngeal Candida albicans (C. albicans) infection usually occurs in patients with altered cell-mediated immune response. Many animal models have been developed for studying the pathogenesis of disease. Here we describe a new model for real-time monitoring of oral candidiasis. Mice were rendered susceptible to oral candidiasis by injection with cortisone acetate. Oral infection was performed by placing a swab saturated with genetically engineered bioluminescent strain of C. albicans sublingually. An in vivo imaging technique, exploiting stably trasformed C. albicans that costitutively express luciferase, was adopted. This novel longitudinal study represents a powerful tool to: (1) test real-time progression of infection, (2) identify the target site of C. albicans in specific organs, (3) evaluate the efficacy of antifungal therapies and (4) explore the spread of C. albicans from the local to systemic compartment in a new way.


Assuntos
Candida albicans/fisiologia , Candidíase Bucal/microbiologia , Rastreamento de Células/métodos , Modelos Animais de Doenças , Camundongos , Orofaringe/microbiologia , Animais , Antifúngicos/uso terapêutico , Candida albicans/genética , Candida albicans/patogenicidade , Candidíase Bucal/tratamento farmacológico , Feminino , Humanos , Luciferases/genética , Luciferases/metabolismo , Camundongos/microbiologia , Camundongos Endogâmicos C57BL , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA