Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Colloid Interface Sci ; 638: 719-732, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36774881

RESUMO

The maintenance of plasma membrane structure is vital for the viability of cells. Disruption of this structure can lead to cell death. One important example is the macroscopic phase separation observed during dehydration associated with desiccation and freezing, often leading to loss of permeability and cell death. It has previously been shown that the hybrid lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) can act as a line-active component in ternary lipid systems, inhibiting macroscopic phase separation and stabilising membrane microdomains in lipid vesicles [1]. The domain size is found to decrease with increasing POPC concentration until complete mixing is observed. However, no such studies have been carried out at reduced hydration. To examine if this phase separation is unique to vesicles in excess water, we have conducted studies on several binary and ternary model membrane systems at both reduced hydration ("powder" type samples and oriented membrane stacks) and in excess water (supported lipid bilayers) at 0.2 mol fraction POPC, in the range where microdomain stabilisation is reported. Differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) are used to map phase transition temperatures, with X-ray and neutron scattering providing details of the changes in lipid packing and phase information within these boundaries. Atomic force microscopy (AFM) is used to image bilayers on a substrate in excess water. In all cases, macroscopic phase separation was observed rather than microdomain formation at this molar ratio. Thus POPC does not stabilise microdomains under these conditions, regardless of the type of model membrane, hydration or temperature. Thus we conclude that the driving force for separation under these conditions overcomes any linactant effects of the hybrid lipid.


Assuntos
Bicamadas Lipídicas , Fosfatidilcolinas , Fosfatidilcolinas/química , Bicamadas Lipídicas/química , Transição de Fase , Água
2.
Exploration (Beijing) ; 3(6): 20220075, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38264690

RESUMO

The alignment of anisotropic nanoparticles in flow has been used for a range of applications such as the preparation of strong fibres and the assembly of in-plane aligned 1D-nanoobjects that are used for electronic devices, sensors, energy and biological application. Important is also the flow behaviour of nanoparticles that were designed for nanomedical applications such as drug delivery. It is widely observed that non-spherical nanoparticles have longer circulation times and a more favourable biodistribution. To be able to understand this behaviour, researchers have turned to analyzing the flow of non-spherical nanoparticles in the blood stream. In this review, an overview of microfluidic techniques that are used to monitor the alignment of anisotropic nanoparticles in solution will be provided, which includes analysis by small angle X-ray scattering (SAXS) and polarized light microscopy. The flow of these nanoparticles in blood is then discussed as the presence of red blood cells causes margination of some nanoparticles. Using fluorescence microscopy, the extent of margination can be identified, which coincides with the ability of nanoparticles to adhere to the cells grown along the wall. While these studies are mainly carried out in vitro using blood, initial investigations in vivo were able to confirm the unusual flow of anisotropic nanoparticles.

3.
Sci Rep ; 11(1): 21463, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728779

RESUMO

Tetracaine (TTC) is a local anesthetic broadly used for topical and spinal blockade, despite its systemic toxicity. Encapsulation in nanostructured lipid carriers (NLC) may prolong TTC delivery at the site of injection, reducing such toxicity. This work reports the development of NLC loading 4% TTC. Structural properties and encapsulation efficiency (%EE > 63%) guided the selection of three pre-formulations of different lipid composition, through a 23 factorial design of experiments (DOE). DLS and TEM analyses revealed average sizes (193-220 nm), polydispersity (< 0.2), zeta potential |- 21.8 to - 30.1 mV| and spherical shape of the nanoparticles, while FTIR-ATR, NTA, DSC, XRD and SANS provided details on their structure and physicochemical stability over time. Interestingly, one optimized pre-formulation (CP-TRANS/TTC) showed phase-separation after 4 months, as predicted by Raman imaging that detected lack of miscibility between its solid (cetyl palmitate) and liquid (Transcutol) lipids. SANS analyses identified lamellar arrangements inside such nanoparticles, the thickness of the lamellae been decreased by TTC. As a result of this combined approach (DOE and biophysical techniques) two optimized pre-formulations were rationally selected, both with great potential as drug delivery systems, extending the release of the anesthetic (> 48 h) and reducing TTC cytotoxicity against Balb/c 3T3 cells.


Assuntos
Anestésicos Locais/farmacologia , Proliferação de Células , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Nanoestruturas/administração & dosagem , Tetracaína/farmacologia , Anestésicos Locais/química , Animais , Células 3T3 BALB , Camundongos , Nanoestruturas/química , Tetracaína/química
4.
Mater Sci Eng C Mater Biol Appl ; 128: 112345, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34474895

RESUMO

Sulforaphane (SFN) is an isothiocyanate with anti-arthritic and immuno-regulatory activities, supported by the downregulation of NF-κB pathway, reduction on metalloproteinases expression and prevention of cytokine-induced cartilage degeneration implicated in OA progression. SFN promising pharmacological effects associated to its possible use, by intra-articular route and directly in contact to the site of action, highlight SFN as promising candidate for the development of drug-delivery systems. The association of poloxamers (PL) and hyaluronic acid (HA) supports the development of osteotrophic and chondroprotective pharmaceutical formulations. This study aims to develop PL-HA hybrid hydrogels as delivery systems for SFN intra-articular release and evaluate their biocompatibility and efficacy for osteoarthritis treatment. All formulations showed viscoelastic behavior and cubic phase organization. SFN incorporation and drug loading showed a concentration-dependent behavior following HA addition. Drug release profiles were influenced by both diffusion and relaxation of polymeric chains mechanisms. The PL407-PL338-HA-SFN hydrogel did not evoke pronounced cytotoxic effects on either osteoblast or chondrosarcoma cell lines. In vitro/ex vivo pharmacological evaluation interfered with an elevated activation of NF-κB and COX-2, increased the type II collagen expression, and inhibited proteoglycan depletion. These results highlight the biocompatibility and the pharmacological efficacy of PL-HA hybrid hydrogels as delivery systems for SFN intra-articular release for OA treatment.


Assuntos
Ácido Hialurônico , Osteoartrite , Cartilagem , Humanos , Hidrogéis , Isotiocianatos/farmacologia , Osteoartrite/tratamento farmacológico , Poloxâmero , Sulfóxidos
5.
Angew Chem Int Ed Engl ; 60(18): 10342-10349, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33543582

RESUMO

The formation of a non-specific protein corona around nanoparticles (NPs) has been identified as one of the culprits for failed nanomedicine. The amount and type of adsorbed protein from the blood plasma are known to determine the fate of NPs and the accessibility of targeting ligands. Herein, we show that the adsorbed protein may not only enlarge the NPs and change their surface properties but also, in the case of soft NPs such as polymer micelles, lead to deformation. Poly(1-O-methacryloyl -ß-D-fructopyranose)-b-poly(methylmethacrylate) (P(1-O-MAFru)-b-PMMA) block co-polymers were self-assembled into NPs with a spherical core-shell morphology as determined by small angle neutron scattering (SANS). Upon incubation with albumin, TEM, SANS, and small angle X-ray scattering (SAXS) revealed the adsorption of albumin and deformation of the NPs with a spheroid geometry. Removal of the protein led to the reversal of the morphology back to the spherical core-shell structure. Structural studies and cell studies of uptake of the NPs imply that the observed deformation may influence blood circulation time and cell uptake.


Assuntos
Nanopartículas/química , Coroa de Proteína/química , Adsorção , Albuminas/química , Micelas , Estrutura Molecular , Nanomedicina , Tamanho da Partícula , Propriedades de Superfície
6.
Biomacromolecules ; 21(3): 1222-1233, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32022540

RESUMO

Tumor targeting has revolutionized cancer research, especially active cellular targeting of nanoparticles, where they are specifically homed to the pathological site to deliver the therapeutics. This strategy, which involves the utilization of affinity ligands on the surface of the nanocarriers, minimizes the nonspecific uptake of nanocarriers and the subsequent harmful side effects in healthy cells. Estrone, one of the mammalian estrogens, has affinity for estrogen receptors (ERα), which are overexpressed in hormone-responsive breast cancers. Despite holding promise, the potential of estrone in active targeting of nanoparticles has barely been explored. Herein, we developed an estrone-appended polyion complex (PIC) micelle to deliver melittin, a cytotoxic peptide, to breast cancer cells. Amino functionalization of estrone was performed to conjugate estrone to the diblock polymer synthesized by reversible addition-fragmentation chain-transfer (RAFT) polymerization. Estrone-conjugated poly(ethylene glycol) methyl ether methacrylate-b-poly tert-butyl methacrylate (POEGMEMA-PtBuMA) could complex with melittin to form PIC micelles of size around 60 nm ensuing from the electrostatic interaction of the deprotected polymer and melittin in aqueous media. Poly(ethylene glycol) methyl ether acrylate-b-poly acrylic acid (POEGMEA-PAA) was also later incorporated to afford PIC micelles that could exhibit similar cytotoxicity to free melittin in the cytotoxicity studies. The estrone-attached PIC micelles exhibited improved cytotoxicity in two-dimensional (2D) and three-dimensional (3D) cellular models of MCF-7 cells. Cross-linking of the PIC micelles was also performed to improve the stability of the micelles and prevent melittin degradation from enzymatic attack. Flow cytometry demonstrated an enhanced cellular uptake greater than sixfold with the estrone-conjugated PIC micelles, thereby establishing a profound difference in the targeting efficacy of the PIC micelles between MCF-7 and MDA-MB-231 cells. Furthermore, the distribution of the PIC micelles in the spheroids was revealed by light sheet microscopy. The results demonstrate the potential of estrone-anchored PIC micelles for targeted delivery of therapeutics to hormone-responsive breast cancer cells.


Assuntos
Neoplasias da Mama , Micelas , Animais , Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos , Estrona , Feminino , Humanos , Meliteno , Polietilenoglicóis , Polímeros
7.
ACS Nano ; 13(9): 10233-10241, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31442025

RESUMO

This study reports the use of operando small-angle neutron scattering to investigate processes in an operating Li/S battery. The combination with impedance spectroscopy yields valuable insights into the precipitation and dissolution of lithium sulfide during 10 cycles of galvanostatic cycling. The use of a deuterated electrolyte increases strongly the sensitivity to detect the sulfur and Li2S precipitates at the carbon host electrode and allows us to observe the time-dependent initial wetting of the system. No correlation of the scattering signal of the micropores with either lithium sulfide or sulfur is observable during the whole course of the experiment. Hence both reaction products do not precipitate inside the microporous structure but on the outer surface of the micrometer-sized carbon fibers used in this study. The excellent scattering contrast allows a detailed analysis of the formation and dissolution process of nanoscopic Li2S structures. While lithium sulfide particles grow homogeneously during the precipitation period, smaller Li2S particles dissolve first followed by a sudden dissolution of the larger Li2S particles.

8.
Colloids Surf B Biointerfaces ; 177: 196-203, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30743066

RESUMO

Deuteration of phospholipids is a common practice to elucidate membrane structure, dynamics and function, by providing selective visualisation in neutron scattering, nuclear magnetic resonance and vibrational spectroscopy. It is generally assumed that the properties of the deuterated lipids are identical to those of the protiated lipids, and while a number of papers have compared the properties of different forms, to date this has been no systematic study of the effects over a range of conditions. Here we present a study of the effects of deuteration on the organisation and phase behaviour of four common phospholipids (DSPC, DPPC, DMPC, DOPC), observing the effect of chain deuteration and headgroup deuteration on lipid structure and phase behaviour. For saturated lipids in excess water the gel-fluid phase transition temperature is 4.3 ± 0.1 °C lower for lipids with deuterated chains compared to protiated chains, consistent with previous work. Despite this significant change, well away from the transition structural changes as measured by powder small angle X-ray scattering are small and within errors. To investigate this further, measurements were carried out on oriented multilamellar stacks of DOPC in the fluid phase at reduced hydration. Neutrons are used in conjunction with contrast variation to elucidate the role of the deuteration explicitly. It is found that deuterated chains cause a reduction in the lamellar repeat spacing and bilayer thickness, but deuterated headgroups cause an increase. Consequences for the interpretation of Neutron Scattering data with deuterated lipids are discussed.


Assuntos
Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Estrutura Molecular , Tamanho da Partícula , Transição de Fase , Propriedades de Superfície
9.
Membranes (Basel) ; 8(4)2018 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-30513837

RESUMO

The alignment of nanostructures in materials such as lyotropic liquid crystal (LLC) templated materials has the potential to significantly improve their performances. However, accurately characterising and quantifying the alignment of such fine structures remains very challenging. In situ small angle X-ray scattering (SAXS) and molecular dynamics were employed for the first time to understand the hexagonal LLC alignment process with magnetic nanoparticles under a magnetic field. The enhanced alignment has been illustrated from the distribution of azimuthal intensity in the samples exposed to magnetic field. Molecular dynamics simulations reveal the relationship between the imposed force of the magnetic nanoparticles under magnetic field and the force transferred to the LLC cylinders which leads to the LLC alignment. The combinational study with experimental measurement and computational simulation will enable the development and control of nanostructures in novel materials for various applications.

10.
Biophys J ; 113(3): 572-579, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28793212

RESUMO

Plants from temperate climate zones are able to increase their freezing tolerance during exposure to low, above-zero temperatures in a process termed cold acclimation. During this process, several cold-regulated (COR) proteins are accumulated in the cells. One of them is COR15A, a small, intrinsically disordered protein that contributes to leaf freezing tolerance by stabilizing cellular membranes. The isolated protein folds into amphipathic α-helices in response to increased crowding conditions, such as high concentrations of glycerol. Although there is evidence for direct COR15A-membrane interactions, the orientation and depth of protein insertion were unknown. In addition, although folding due to high osmolyte concentrations had been established, the folding response of the protein under conditions of gradual dehydration had not been investigated. Here we show, using Fourier transform infrared spectroscopy, that COR15A starts to fold into α-helices already under mild dehydration conditions (97% relative humidity (RH), corresponding to freezing at -3°C) and that folding gradually increases with decreasing RH. Neutron diffraction experiments at 97 and 75% RH established that the presence of COR15A had no significant influence on the structure of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membranes. However, using deuterated POPC we could clearly establish that COR15A interacts with the membranes and penetrates below the headgroup region into the upper part of the fatty acyl chain region. This localization is in agreement with our hypothesis that COR15A-membrane interaction is at least, in part, driven by a hydrophobic interaction between the lipids and the hydrophobic face of the amphipathic protein α-helix.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Água/metabolismo , Fosfatidilcolinas/metabolismo , Conformação Proteica em alfa-Hélice , Dobramento de Proteína , Propriedades de Superfície
11.
Soft Matter ; 13(3): 658-669, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-27995248

RESUMO

An UCST-type copolymer of acrylamide (AAm) and acrylonitrile (AN) (poly(AAm-co-AN)) was prepared by reversible addition fragmentation chain transfer (RAFT) polymerization and its temperature-induced phase transition and aggregation behaviour studied by turbidimetry, static and dynamic light scattering, small angle neutron scattering (SANS) and cryo-transmission electron microscopy (cryo-TEM) measurements. The phase transition temperature was found to increase with increasing AN content in the copolymer, concentration of the solutions and copolymer chain length. A significant effect was observed onto the phase transition temperature by addition of different electrolytes into the copolymer solution. The copolymer chains were aggregated below the phase transition temperature and disaggregated above it. The size of the aggregates increases with increasing AN contents and concentration of the copolymer solutions below the phase transition temperature. The copolymer chains were expanded and weekly associated in solution above the phase transition temperature. A model is proposed to explain such association-aggregation behaviour of poly(AAm-co-AN) copolymers depending on AN contents and concentration of the copolymer solutions as a function of temperature.

12.
Langmuir ; 31(33): 9134-41, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26225718

RESUMO

Understanding sugar-lipid interactions during desiccation and freezing is an important step in the elucidation of cryo- and anhydro-protection mechanisms. We determine sucrose, trehalose, and water concentration distributions in intra-bilayer volumes between opposing dioleoylphosphatidylcholine bilayers over a range of reduced hydrations and sugar concentrations. Stacked lipid bilayers at reduced hydration provide a suitable system to mimic environmental dehydration effects, as well as a suitable system for direct probing of sugar locations by neutron membrane diffraction. Sugar distributions show that sucrose and trehalose both behave as typical uncharged solutes, largely excluded from the lipid bilayers regardless of sugar identity, and with no correlation between sugar distribution and the lipid headgroup position as the hydration is changed. These results are discussed in terms of current opinions about cryo- and anhydro-protection mechanisms.


Assuntos
Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Sacarose/química
13.
J R Soc Interface ; 11(95): 20140069, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24647907

RESUMO

Trehalose, a natural disaccharide with bioprotective properties, is widely recognized for its ability to preserve biological membranes during freezing and dehydration events. Despite debate over the molecular mechanisms by which this is achieved, and that different mechanisms imply quite different distributions of trehalose molecules with respect to the bilayer, there are no direct experimental data describing the location of trehalose within lipid bilayer membrane systems during dehydration. Here, we use neutron membrane diffraction to conclusively show that the trehalose distribution in a dioleoylphosphatidylcholine (DOPC) system follows a Gaussian profile centred in the water layer between bilayers. The absence of any preference for localizing near the lipid headgroups of the bilayers indicates that the bioprotective effects of trehalose at physiologically relevant concentrations are the result of non-specific mechanisms that do not rely on direct interactions with the lipid headgroups.


Assuntos
Crioprotetores/química , Modelos Químicos , Fosfatidilcolinas/química , Trealose/química , Dessecação
14.
Int J Mol Sci ; 14(4): 8148-63, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-23584028

RESUMO

Scattering techniques have played a key role in our understanding of the structure and function of phospholipid membranes. These techniques have been applied widely to study how different molecules (e.g., cholesterol) can affect phospholipid membrane structure. However, there has been much less attention paid to the effects of molecules that remain in the aqueous phase. One important example is the role played by small solutes, particularly sugars, in protecting phospholipid membranes during drying or slow freezing. In this paper, we present new results and a general methodology, which illustrate how contrast variation small angle neutron scattering (SANS) and synchrotron-based X-ray scattering (small angle (SAXS) and wide angle (WAXS)) can be used to quantitatively understand the interactions between solutes and phospholipids. Specifically, we show the assignment of lipid phases with synchrotron SAXS and explain how SANS reveals the exclusion of sugars from the aqueous region in the particular example of hexagonal II phases formed by phospholipids.


Assuntos
Carboidratos/química , Lipídeos de Membrana/química , Fosfolipídeos/química , Metabolismo dos Carboidratos , Membrana Celular/química , Membrana Celular/metabolismo , Desidratação/metabolismo , Lipídeos de Membrana/metabolismo , Modelos Biológicos , Difração de Nêutrons , Fosfolipídeos/metabolismo , Espalhamento a Baixo Ângulo , Síncrotrons , Difração de Raios X
15.
Chem Phys Lipids ; 157(1): 56-60, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19026619

RESUMO

The inverse hexagonal to inverse ribbon phase transition in a mixed phosphatidylcholine-phosphatidylethanolamine system at low hydration is studied using small and wide angle X-ray scattering. It is found that the structural parameters of the inverse hexagonal phase are independent of temperature. By contrast the length of each ribbon of the inverse ribbon phase increases continuously with decreasing temperature over a range of 50 degrees C. At low temperatures the inverse ribbon phase is observed to have a transition to a gel lamellar phase, with no intermediate fluid lamellar phase. This phase transition is confirmed by differential scanning calorimetry.


Assuntos
Misturas Complexas/química , Transição de Fase , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Água/química , Géis , Espalhamento a Baixo Ângulo , Síncrotrons , Temperatura , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA