Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Mol Pharm ; 11(5): 1424-34, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24588618

RESUMO

Effective delivery of small interfering RNA (siRNA) requires efficient cellular uptake and release into cytosol where it forms an active complex with RNAi induced silencing complex (RISC). Despite rapid developments in RNAi therapeutics, improvements in delivery efficiency of siRNA are needed to realize the full potential of this modality in broad therapeutic applications. We evaluated potential physiological and biochemical barrier(s) to the effective liver delivery of siRNA formulated in lipid nanoparticle (LNP) delivery vehicles. The comparative siRNA delivery performance of three LNPs was investigated in rats. They were assembled with either C14- or C18-anchored PEG-lipid(s), cationic lipid(s), and various helper lipid(s) and contained the same siRNA duplex. These LNPs demonstrated differentiated potency with ED50's ranging from 0.02 to 0.25 mg/kg. The two C14-PEG-LNPs had comparable siRNA exposure in plasma and liver, while the C18-PEG-LNP demonstrated a higher plasma siRNA exposure and a slower but sustained liver uptake. RISC bound siRNA within the liver, a more proximal measure of the pharmacologically active siRNA species, displayed loading kinetics that paralleled the target mRNA knockdown profile, with greater RISC loading associated with more potent LNPs. Liver perfusion and hepatocyte isolation experiments were performed following treatment of rats with LNPs containing VivoTag-fluorescently labeled siRNA. One hour after dosing a majority of the siRNA within the liver was associated with hepatocytes and was internalized (within small subcellular vesicles) with no significant cell surface association, indicating good liver tissue penetration, hepatocellular distribution, and internalization. Comparison of siRNA amounts in hepatocytes and subcellular fractions of the three LNPs suggests that endosomal escape is a significant barrier to siRNA delivery where cationic lipid seems to have a great impact. Quantitation of Ago-2 associated siRNA revealed that after endosomal escape further loss of siRNA occurs prior to RISC loading. This quantitative assessment of LNP-mediated siRNA delivery has highlighted potential barriers with respect to endosomal escape and incomplete RISC loading for delivery optimization efforts.


Assuntos
Lipídeos/química , Fígado/metabolismo , Nanopartículas/administração & dosagem , Nanopartículas/química , RNA Interferente Pequeno/administração & dosagem , Animais , Células Cultivadas , Feminino , Hepatócitos/metabolismo , Microscopia de Fluorescência , RNA Interferente Pequeno/química , Ratos , Ratos Sprague-Dawley
2.
Artigo em Inglês | MEDLINE | ID: mdl-23366734

RESUMO

Transgenic mice with Tie2- green fluorescent protein (GFP) are used as a model to study the kinetic distribution of the Cy5-siRNA delivered by lipid nanoparticles (LNP) into the liver. After the mouse is injected with the LNP, it undergoes a procedure of intra-vital multi-photon microscopy imaging over a period of two hours, during which the process for the nanoparticle to diffuse into the hepatocytes from the vasculature system is monitored. Since the images are obtained in-vivo, the quantification of Cy5 kinetics suffers from the moving field of view (FOV). A method is proposed to register the sequence of images through template matching. Based on the semi-automatic segmentations of the vessels in the common FOV, the registered images are segmented into three regions of interest (ROI) in which the Cy5 signals are quantified. Computation of the percentage signal strength in the ROIs over time allows for the analysis of the diffusion of Cy5-siRNA into the hepatocytes, and helps demonstrate the effectiveness of the Cy5-siRNA delivery vehicle.


Assuntos
Carbocianinas/metabolismo , Imageamento Tridimensional , Microscopia de Fluorescência por Excitação Multifotônica/métodos , RNA Interferente Pequeno/metabolismo , Processamento de Sinais Assistido por Computador , Animais , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Transgênicos
3.
J Histochem Cytochem ; 59(8): 727-40, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21804077

RESUMO

Chemically stabilized small interfering RNA (siRNA) can be delivered systemically by intravenous injection of lipid nanoparticles (LNPs) in rodents and primates. The biodistribution and kinetics of LNP-siRNA delivery in mice at organ and cellular resolution have been studied using immunofluorescence (IF) staining and quantitative polymerase chain reaction (qPCR). At 0.5 and 2 hr post tail vein injection of Cy5-labeled siRNA encapsulated in LNP, the organ rank-order of siRNA levels is liver > spleen > kidney, with only negligible accumulation in duodenum, lung, heart, and brain. Similar conclusions were drawn by using qPCR to measure tissue siRNA levels as a secondary end point. siRNA levels in these tissues decreased by more than 10-fold after 24 hr. Within the liver, LNPs delivered siRNA to hepatocytes, Kupffer cells, and sinusoids in a time-dependent manner, as revealed by IF staining and signal quantitation methods established using OPERA/Columbus software. siRNA first accumulated in liver sinusoids and trafficked to hepatocytes by 2 hr post dose, corresponding to the onset of target mRNA silencing. Fluorescence in situ hybridization methods were used to detect both strands of siRNA in fixed tissues. Collectively, the authors have implemented a platform to evaluate biodistribution of siRNA across cell types and across tissues in vivo, with the objective of elucidating the pharmacokinetic and pharmacodynamic relationship to guide optimization of delivery vehicles.


Assuntos
Autoantígenos/metabolismo , Lipídeos , Nanopartículas , RNA Interferente Pequeno/metabolismo , Ribonucleoproteínas/metabolismo , Animais , Autoantígenos/genética , Portadores de Fármacos , Imunofluorescência , Técnicas de Silenciamento de Genes , Hibridização in Situ Fluorescente , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/administração & dosagem , Ribonucleoproteínas/genética , Distribuição Tecidual , Antígeno SS-B
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA