RESUMO
An important factor for dairy cattle farmers is the profitability of cattle rearing, which is influenced by the animals' health and reproductive parameters, as well as their genomic stability and integrity. Bovine viral diarrhea (BVD) negatively affects the health of dairy cattle and causes reproductive problems. The aim of the study was to identify genomic instability in cows with reproductive disorders following infection with the BVD virus. The material for analysis was peripheral blood from Holstein-Friesian cows with reproductive problems, which had tested positive for BVD, and from healthy cows with no reproductive problems, which had tested negative for BVD. Three cytogenetic tests were used: the sister chromatid exchange assay, fragile sites assay, and comet assay. Statistically significant differences were noted between the groups and between the individual cows in the average frequency of damage. The assays were good biomarkers of genomic stability and enabled the identification of individuals with an increased frequency of damage to genetic material that posed a negative impact on their health. The assays can be used to prevent disease during its course and evaluate the genetic resistance of animals. This is especially important for the breeder, both for economic and breeding reasons. Of the three assays, the comet assay proved to be the most sensitive for identifying DNA damage in the animals.
RESUMO
Damage to genetic material and errors in the functioning of cellular mechanisms disturb genome stability and integrity. Assessment of genomic stability in animals is a very important aspect of breeding work. Unfortunately, harmful instabilities affect the functioning, health and reproductive processes of animals. Obtaining healthy calves is a priority, whatever methods of reproductive biotechnology are applied. The aim of the study was to assess the genomic stability of calves obtained from artificial insemination and OPU/IVP in vitro fertilization. The genomic stability of the calves was evaluated using the comet, sister chromatid exchange, and fragile sites assays. Damage to the genetic material of calves obtained by two reproductive biotechnologies was identified. Identification of instability in animals can be a valuable tool in breeding work and accelerate breeding progress.
Assuntos
Doenças dos Bovinos , Transferência Embrionária , Animais , Bovinos/genética , Transferência Embrionária/veterinária , Fertilização in vitro/veterinária , Inseminação Artificial/veterinária , Instabilidade GenômicaRESUMO
Genome instability can lead to a wide variety of diseases. Many endogenous and exogenous factors influence the level of damage to genetic material. Genome integrity depends on factors such as the fidelity of DNA replication, normal DNA organization in the chromosomes, and repair mechanisms. Genome stability influences fertility, embryonic development, and the maintenance of pregnancy. In the case of in vitro fertilization, it can be an important factor determining the success of the procedure. The aim of the study was to assess the stability of the genomes of recipient cows following in vitro fertilization using cytogenetic tests and to analyze the effects of selected vitamins and micro- and macroelements on genome integrity. Genome stability was analyzed using the sister chromatid exchange, fragile site, and comet assays. The material for analysis was peripheral blood from 20 Holstein-Friesian heifers that were embryo transfer recipients. The effect of selected micro- and macroelements and vitamins on the genome stability of the cows was analyzed. Folic acid was shown to significantly influence the level of damage identified using the SCE, FS, and SCGE assays, while iron affected SCE and SCGE results, and zinc affected FS.
RESUMO
The article presents an overview of research conducted in recent years, i.e., from 2004 until now. The study has been prompted by the threat of drought over large land areas which, as a result of current climate change, may lead to desertification in dry and hot regions of the world. For the same reason, large areas of farmland are affected by drought stress. At the same time, rising air temperatures result in a significant intensification of evaporation and a gradual increase in soil salinity. This applies in particular to acres of farmland, forested areas, and green areas of cities, as well as degraded land or brownfields. As the crop stability is threatened, the food base of the world's population is at risk and, additionally, in areas of industrial districts, people's health is in decline. Due to these multistress conditions for plant growth, we propose a review of the current literature which addresses the possibility of counteracting these unfavorable phenomena through the appropriate selection of plant species and, when only applicable, also through specific agroecological treatments. A selection of herbaceous and woody plants useful for cultivation on saline marginal lands was proposed.