Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Glob Chang Biol ; 30(5): e17317, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747199

RESUMO

Each year, an average of 45 tropical cyclones affect coastal areas and potentially impact forests. The proportion of the most intense cyclones has increased over the past four decades and is predicted to continue to do so. Yet, it remains uncertain how topographical exposure and tree characteristics can mediate the damage caused by increasing wind speed. Here, we compiled empirical data on the damage caused by 11 cyclones occurring over the past 40 years, from 74 forest plots representing tropical regions worldwide, encompassing field data for 22,176 trees and 815 species. We reconstructed the wind structure of those tropical cyclones to estimate the maximum sustained wind speed (MSW) and wind direction at the studied plots. Then, we used a causal inference framework combined with Bayesian generalised linear mixed models to understand and quantify the causal effects of MSW, topographical exposure to wind (EXP), tree size (DBH) and species wood density (ρ) on the proportion of damaged trees at the community level, and on the probability of snapping or uprooting at the tree level. The probability of snapping or uprooting at the tree level and, hence, the proportion of damaged trees at the community level, increased with increasing MSW, and with increasing EXP accentuating the damaging effects of cyclones, in particular at higher wind speeds. Higher ρ decreased the probability of snapping and to a lesser extent of uprooting. Larger trees tended to have lower probabilities of snapping but increased probabilities of uprooting. Importantly, the effect of ρ decreasing the probabilities of snapping was more marked for smaller than larger trees and was further accentuated at higher MSW. Our work emphasises how local topography, tree size and species wood density together mediate cyclone damage to tropical forests, facilitating better predictions of the impacts of such disturbances in an increasingly windier world.


Assuntos
Tempestades Ciclônicas , Florestas , Árvores , Clima Tropical , Vento , Árvores/crescimento & desenvolvimento , Teorema de Bayes
2.
Sci Total Environ ; 876: 162697, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36898535

RESUMO

Refugia can facilitate the persistence of species under long-term environmental change, but it is not clear if Pleistocene refugia will remain functional as anthropogenic climate change progresses. Dieback in populations restricted to refugia therefore raises concerns about their long-term persistence. Using repeat field surveys, we investigate dieback in an isolated population of Eucalyptus macrorhyncha during two droughts and discuss prospects for its continued persistence in a Pleistocene refugium. We first confirm that the Clare Valley in South Australia has constituted a long-term refugium for the species, with the population being genetically highly distinct from other conspecific populations. However, the population lost >40 % of individuals and biomass through the droughts, with mortality being just below 20 % after the Millennium Drought (2000-2009) and almost 25 % after the Big Dry (2017-2019). The best predictors of mortality differed after each drought. While north-facing aspect of a sampling location was significant positive predictor after both droughts, biomass density and slope were significant negative predictors only after the Millennium Drought, and distance to the north-west corner of the population, which intercepts hot, dry winds, was a significant positive predictor after the Big Dry only. This suggests that more marginal sites with low biomass and sites located on flat plateaus were more vulnerable initially, but that heat-stress was an important driver of dieback during the Big Dry. Therefore, the causative drivers of dieback may change during population decline. Regeneration occurred predominantly on southern and eastern aspects, which would receive the least solar radiation. While this refugial population is experiencing severe decline, some gullies with lower solar radiation appear to support relatively healthy, regenerating stands of red stringybark, providing hope for persistence in small pockets. Monitoring and managing these pockets during future droughts will be essential to ensure the persistence of this isolated and genetically unique population.


Assuntos
Secas , Refúgio de Vida Selvagem , Humanos , Animais , Austrália do Sul , Austrália , Biomassa , Árvores
3.
Trends Plant Sci ; 27(12): 1218-1230, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36244895

RESUMO

Global change is altering interactions between ecological disturbances. We review interactions between tropical cyclones and fires that affect woody biomes in many islands and coastal areas. Cyclone-induced damage to trees can increase fuel loads on the ground and dryness in the understory, which increases the likelihood, intensity, and area of subsequent fires. In forest biomes, cyclone-fire interactions may initiate a grass-fire cycle and establish stable open-canopy biomes. In cyclone-prone regions, frequent cyclone-enhanced fires may generate and maintain stable open-canopy biomes (e.g., savannas and woodlands). We discuss how global change is transforming fire and cyclone regimes, extensively altering cyclone-fire interactions. These altered cyclone-fire interactions are shifting biomes away from historical states and causing loss of biodiversity.


Assuntos
Tempestades Ciclônicas , Incêndios , Ecossistema , Árvores , Florestas
4.
Nat Ecol Evol ; 6(10): 1423-1437, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35941205

RESUMO

The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers.


Assuntos
Biodiversidade , Florestas , Solo , Árvores
5.
Ecol Evol ; 12(4): e8817, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35475179

RESUMO

The importance of terrestrial coastal ecosystems for maintaining healthy coral reef ecosystems remains understudied. Sea kraits are amphibious snakes that require healthy coral reefs for foraging, but little is known about their requirements of terrestrial habitats, where they slough their skin, digest prey, and breed. Using concurrent microclimate measurements and behavior surveys, we show that a small, topographically flat atoll in Fiji with coastal forest provides many microhabitats that relate to the behaviors of Yellow Lipped Sea Kraits, Laticauda colubrina. Microclimates were significantly related to canopy cover, leaf litter depth, and distance from the high-water mark (HWM). Sea kraits were almost exclusively observed in coastal forest within 30 m of the HWM. Sloughing of skins only occurred within crevices of mature or dying trees. Resting L. colubrina were significantly more likely to occur at locations with higher mean diurnal temperatures, lower leaf litter depths, and shorter distances from the HWM. On Leleuvia, behavior of L. colubrina therefore relates to environmental heterogeneity created by old-growth coastal forests, particularly canopy cover and crevices in mature and dead tree trunks. The importance of healthy coastal habitats, both terrestrial and marine, for L. colubrina suggests it could be a good flagship species for advocating integrated land-sea management. Furthermore, our study highlights the importance of coastal forests and topographically flat atolls for biodiversity conservation. Effective conservation management of amphibious species that utilize land- and seascapes is therefore likely to require a holistic approach that incorporates connectivity among ecosystems and environmental heterogeneity at all relevant scales.

6.
PLoS One ; 16(5): e0252063, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34015004

RESUMO

There is a debate concerning the definition and extent of tropical dry forest biome and vegetation type at a global spatial scale. We identify the potential extent of the tropical dry forest biome based on bioclimatic definitions and climatic data sets to improve global estimates of distribution, cover, and change. We compared four bioclimatic definitions of the tropical dry forest biome-Murphy and Lugo, Food and Agriculture Organization (FAO), DryFlor, aridity index-using two climatic data sets: WorldClim and Climatologies at High-resolution for the Earth's Land Surface Areas (CHELSA). We then compared each of the eight unique combinations of bioclimatic definitions and climatic data sets using 540 field plots identified as tropical dry forest from a literature search and evaluated the accuracy of World Wildlife Fund tropical and subtropical dry broadleaf forest ecoregions. We used the definition and climate data that most closely matched field data to calculate forest cover in 2000 and change from 2001 to 2020. Globally, there was low agreement (< 58%) between bioclimatic definitions and WWF ecoregions and only 40% of field plots fell within these ecoregions. FAO using CHELSA had the highest agreement with field plots (81%) and was not correlated with the biome extent. Using the FAO definition with CHELSA climatic data set, we estimate 4,931,414 km2 of closed canopy (≥ 40% forest cover) tropical dry forest in 2000 and 4,369,695 km2 in 2020 with a gross loss of 561,719 km2 (11.4%) from 2001 to 2020. Tropical dry forest biome extent varies significantly based on bioclimatic definition used, with nearly half of all tropical dry forest vegetation missed when using ecoregion boundaries alone, especially in Africa. Using site-specific field validation, we find that the FAO definition using CHELSA provides an accurate, standard, and repeatable way to assess tropical dry forest cover and change at a global scale.


Assuntos
Agricultura , Ecossistema , Florestas , Clima Tropical , África , Humanos , Árvores/crescimento & desenvolvimento
7.
Trends Plant Sci ; 25(4): 329-339, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31953170

RESUMO

The study of insular systems has a long history in ecology and biogeography. Island plants often differ remarkably from their noninsular counterparts, constituting excellent models for exploring eco-evolutionary processes. Trait-based approaches can help to answer important questions in island biogeography, yet plant trait patterns on islands remain understudied. We discuss three key hypotheses linking functional ecology to island biogeography: (i) plants in insular systems are characterized by distinct functional trait syndromes (compared with noninsular environments); (ii) these syndromes differ between true islands and terrestrial habitat islands; and (iii) island characteristics influence trait syndromes in a predictable manner. We are convinced that implementing trait-based comparative approaches would considerably further our understanding of plant ecology and evolution in insular systems.


Assuntos
Biodiversidade , Ecologia , Evolução Biológica , Ecossistema , Ilhas , Plantas
8.
Ecol Evol ; 9(13): 7660-7675, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31346430

RESUMO

Determining patterns of plant diversity on granite inselbergs is an important task for conservation biogeography due to mounting threats. However, beyond the tropics there are relatively few quantitative studies of floristic diversity, or consideration of these patterns and their environmental, biogeographic, and historical correlates for conservation. We sought to contribute broader understanding of global patterns of species diversity on granite inselbergs and inform biodiversity conservation in the globally significant Southwest Australian Floristic Region (SWAFR). We surveyed floristics from 16 inselbergs (478 plots) across the climate gradient of the SWAFR stratified into three major habitats on each outcrop. We recorded 1,060 species from 92 families. At the plot level, local soil and topographic variables affecting aridity were correlated with species richness in herbaceous (HO) and woody vegetation (WO) of soil-filled depressions, but not in woody vegetation on deeper soils at the base of outcrops (WOB). At the outcrop level, bioclimatic variables affecting aridity were correlated with species richness in two habitats (WO and WOB) but, contrary to predictions from island biogeography, were not correlated with inselberg area and isolation in any of the three habitats. Species turnover in each of the three habitats was also influenced by aridity, being correlated with bioclimatic variables and with interplot geographic distance, and for HO and WO habitats with local site variables. At the outcrop level, species replacement was the dominant component of species turnover in each of the three habitats, consistent with expectations for long-term stable landscapes. Our results therefore highlight high species diversity and turnover associated with granite outcrop flora. Hence, effective conservation strategies will need to focus on protecting multiple inselbergs across the entire climate gradient of the region.

9.
Sci Rep ; 9(1): 7176, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-31073136

RESUMO

Fine-scale topographic complexity creates important microclimates that can facilitate species to grow outside their main distributional range and increase biodiversity locally. Enclosed depressions in karst landscapes ('dolines') are topographically complex environments which produce microclimates that are drier and warmer (equator-facing slopes) and cooler and moister (pole-facing slopes and depression bottoms) than the surrounding climate. We show that the distribution patterns of functional groups for organisms in two different phyla, Arthropoda (ants) and Tracheophyta (vascular plants), mirror this variation of microclimate. We found that north-facing slopes and bottoms of solution dolines in northern Hungary provided key habitats for ant and plant species associated with cooler and/or moister conditions. Contrarily, south-facing slopes of dolines provided key habitats for species associated with warmer and/or drier conditions. Species occurring on the surrounding plateau were associated with intermediate conditions. We conclude that karst dolines provide a diversity of microclimatic habitats that may facilitate the persistence of taxa with diverse environmental preferences, indicating these dolines to be potential safe havens for multiple phyla under local and global climate oscillations.


Assuntos
Formigas/fisiologia , Traqueófitas/fisiologia , Animais , Biodiversidade , Clima , Ecossistema , Umidade , Hungria , Temperatura
10.
Ann Bot ; 122(6): 927-934, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30239590

RESUMO

Background: Refugia are island-like habitats that are linked to long-term environmental stability and, as a result, high endemism. Conservation of refugia and endemism hotspots should be based on a deep ecological and evolutionary understanding of their functioning, which remains limited. Although functional traits can provide such insights, a corresponding, coherent framework is lacking. Proposed Framework: Plant communities in refugia and endemism hotspots should, due to long-term environmental stability, display unique functional characteristics linked to distinct phylogenetic patterns. Therefore, such communities should be characterized by a functional signature that exhibits: (1) distinct values and combinations of traits, (2) higher functional diversity and (3) a prevalence of similar traits belonging to more distantly related lineages inside, compared to outside, of endemism hotspots and refugia. While the limited functional trait data available from refugia and endemism hotspots do not allow these predictions to be tested rigorously, three potential applications of the functional signature in biogeography and conservation planning are highlighted. Firstly, it allows the functional characteristics of endemism hotspots and refugia to be identified. Secondly, the strength of the functional signature can be compared among these entities, and with the surrounding landscape, to provide an estimate of the capacity of endemism hotspots and refugia to buffer environmental changes. Finally, the pattern of the functional signature can reveal ecological and evolutionary processes driving community assembly and functioning, which can assist in predicting the effect of environmental changes (e.g. climate, land-use) on communities in endemism hotspots and refugia. Conclusion: The proposed functional signature concept allows the systematic integration of plant functional traits and phylogeny into the study of endemism hotspots and refugia, but more data on functional traits in these entities are urgently needed. Overcoming this limitation would facilitate rigorous testing of the proposed predictions for the functional signature, advancing the eco-evolutionary understanding of endemism hotspots and refugia.


Assuntos
Evolução Biológica , Características de História de Vida , Plantas , Refúgio de Vida Selvagem , Biodiversidade , Ecossistema
11.
Ecol Evol ; 8(1): 435-440, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29321883

RESUMO

Complex processes related to biotic and abiotic forces can impose limitations to assembly and composition of plant communities. Quantifying the effects of these constraints on plant functional traits across environmental gradients, and among communities, remains challenging. We define ecological constraint (Ci ) as the combined, limiting effect of biotic interactions and environmental filtering on trait expression (i.e., the mean value and range of functional traits). Here, we propose a set of novel parameters to quantify this constraint by extending the trait-gradient analysis (TGA) methodology. The key parameter is ecological constraint, which is dimensionless and can be measured at various scales, for example, on population and community levels. It facilitates comparing the effects of ecological constraints on trait expressions across environmental gradients, as well as within and among communities. We illustrate the implementation of the proposed parameters using the bark thickness of 14 woody species along an aridity gradient on granite outcrops in southwestern Australia. We found a positive correlation between increasing environmental stress and strength of ecological constraint on bark thickness expression. Also, plants from more stressful habitats (shrublands on shallow soils and in sun-exposed locations) displayed higher ecological constraint for bark thickness than plants in more benign habitats (woodlands on deep soils and in sheltered locations). The relative ease of calculation and dimensionless nature of Ci allow it to be readily implemented at various scales and make it widely applicable. It therefore has the potential to advance the mechanistic understanding of the ecological processes shaping trait expression. Some future applications of the new parameters could be investigating the patterns of ecological constraints (1) among communities from different regions, (2) on different traits across similar environmental gradients, and (3) for the same trait across different gradient types.

12.
PLoS One ; 12(8): e0183106, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28806772

RESUMO

Extreme heat events will become more frequent under anthropogenic climate change, especially in Mediterranean ecosystems. Microhabitats can considerably moderate (buffer) the effects of extreme weather events and hence facilitate the persistence of some components of the biodiversity. We investigate the microclimatic moderation provided by two important microhabitats (cavities formed by the leaves of the grass-tree Xanthorrhoea semiplana F.Muell., Xanthorrhoeaceae; and inside the leaf-litter) during the summer of 2015/16 on the Fleurieu Peninsula of South Australia. We placed microsensors inside and outside these microhabitats, as well as above the ground below the forest canopy. Grass-tree and leaf-litter microhabitats significantly buffered against high temperatures and low relative humidity, compared to ground-below-canopy sensors. There was no significant difference between grass-tree and leaf-litter temperatures: in both microhabitats, daily temperature variation was reduced, day temperatures were 1-5°C cooler, night temperatures were 0.5-3°C warmer, and maximum temperatures were up to 14.4°C lower, compared to ground-below-canopy sensors. Grass-tree and leaf-litter microhabitats moderated heat increase at an average rate of 0.24°C temperature per 1°C increase of ambient temperature in the ground-below-canopy microhabitat. The average daily variation in temperature was determined by the type (grass-tree and leaf-litter versus ground-below-canopy) of microhabitat (explaining 67%), the amount of canopy cover and the area of the vegetation fragment (together explaining almost 10% of the variation). Greater canopy cover increased the amount of microclimatic moderation provided, especially in the leaf-litter. Our study highlights the importance of microhabitats in moderating macroclimatic conditions. However, this moderating effect is currently not considered in species distribution modelling under anthropogenic climate change nor in the management of vegetation. This shortcoming will have to be addressed to obtain realistic forecasts of future species distributions and to achieve effective management of biodiversity.


Assuntos
Ecossistema , Microclima , Estações do Ano , Temperatura , Geografia , Umidade , Modelos Lineares , Região do Mediterrâneo
13.
Ann Bot ; 119(2): 289-300, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27634576

RESUMO

BACKGROUND AND AIMS: Low-altitude mountains constitute important centres of diversity in landscapes with little topographic variation, such as the Southwest Australian Floristic Region (SWAFR). They also provide unique climatic and edaphic conditions that may allow them to function as refugia. We investigate whether the Porongurups (altitude 655 m) in the SWAFR will provide a refugium for the endemic Ornduffia calthifolia and O. marchantii under forecast climate change. METHODS: We used species distribution modelling based on WorldClim climatic data, 30-m elevation data and a 2-m-resolution LiDAR-derived digital elevation model (DEM) to predict current and future distributions of the Ornduffia species at local and regional scales based on 605 field-based abundance estimates. Future distributions were forecast using RCP2.6 and RCP4.5 projections. To determine whether local edaphic and biotic factors impact these forecasts, we tested whether soil depth and vegetation height were significant predictors of abundance using generalized additive models (GAMs). KEY RESULTS: Species distribution modelling revealed the importance of elevation and topographic variables at the local scale for determining distributions of both species, which also preferred shadier locations and higher slopes. However, O. calthifolia occurred at higher (cooler) elevations with rugged, concave topography, while O. marchantii occurred in disturbed sites at lower locations with less rugged, convex topography. Under future climates both species are likely to severely contract under the milder RCP2.6 projection (approx. 2 °C of global warming), but are unlikely to persist if warming is more severe (RCP4.5). GAMs showed that soil depth and vegetation height are important predictors of O. calthifolia and O. marchantii distributions, respectively. CONCLUSIONS: The Porongurups constitute an important refugium for O. calthifolia and O. marchantii, but limits to this capacity may be reached if global warming exceeds 2 °C. This capacity is moderated at local scales by biotic and edaphic factors.


Assuntos
Biodiversidade , Fenômenos Fisiológicos Vegetais , Altitude , Austrália , Mudança Climática , Plantas/classificação , Refúgio de Vida Selvagem
14.
Ann Bot ; 119(2): 301-309, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28025290

RESUMO

BACKGROUND AND AIMS: Dolines are small- to large-sized bowl-shaped depressions of karst surfaces. They may constitute important microrefugia, as thermal inversion often maintains cooler conditions within them. This study aimed to identify the effects of large- (macroclimate) and small-scale (slope aspect and vegetation type) environmental factors on cool-adapted plants in karst dolines of East-Central Europe. We also evaluated the potential of these dolines to be microrefugia that mitigate the effects of climate change on cool-adapted plants in both forest and grassland ecosystems. METHODS: We compared surveys of plant species composition that were made between 2007 and 2015 in 21 dolines distributed across four mountain ranges (sites) in Hungary and Romania. We examined the effects of environmental factors on the distribution and number of cool-adapted plants on three scales: (1) regional (all sites); (2) within sites and; (3) within dolines. Generalized linear models and non-parametric tests were used for the analyses. KEY RESULTS: Macroclimate, vegetation type and aspect were all significant predictors of the diversity of cool-adapted plants. More cool-adapted plants were recorded in the coolest site, with only few found in the warmest site. At the warmest site, the distribution of cool-adapted plants was restricted to the deepest parts of dolines. Within sites of intermediate temperature and humidity, the effect of vegetation type and aspect on the diversity of cool-adapted plants was often significant, with more taxa being found in grasslands (versus forests) and on north-facing slopes (versus south-facing slopes). CONCLUSIONS: There is large variation in the number and spatial distribution of cool-adapted plants in karst dolines, which is related to large- and small-scale environmental factors. Both macro- and microrefugia are therefore likely to play important roles in facilitating the persistence of cool-adapted plants under global warming.


Assuntos
Ecossistema , Fenômenos Fisiológicos Vegetais , Mudança Climática , Temperatura Baixa , Refúgio de Vida Selvagem
17.
PLoS One ; 9(1): e82778, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24416149

RESUMO

Identification of refugia is an increasingly important adaptation strategy in conservation planning under rapid anthropogenic climate change. Granite outcrops (GOs) provide extraordinary diversity, including a wide range of taxa, vegetation types and habitats in the Southwest Australian Floristic Region (SWAFR). However, poor characterization of GOs limits the capacity of conservation planning for refugia under climate change. A novel means for the rapid identification of potential refugia is presented, based on the assessment of local-scale environment and vegetation structure in a wider region. This approach was tested on GOs across the SWAFR. Airborne discrete return Light Detection And Ranging (LiDAR) data and Red Green and Blue (RGB) imagery were acquired. Vertical vegetation profiles were used to derive 54 structural classes. Structural vegetation types were described in three areas for supervised classification of a further 13 GOs across the region. Habitat descriptions based on 494 vegetation plots on and around these GOs were used to quantify relationships between environmental variables, ground cover and canopy height. The vegetation surrounding GOs is strongly related to structural vegetation types (Kappa = 0.8) and to its spatial context. Water gaining sites around GOs are characterized by taller and denser vegetation in all areas. The strong relationship between rainfall, soil-depth, and vegetation structure (R(2) of 0.8-0.9) allowed comparisons of vegetation structure between current and future climate. Significant shifts in vegetation structural types were predicted and mapped for future climates. Water gaining areas below granite outcrops were identified as important putative refugia. A reduction in rainfall may be offset by the occurrence of deeper soil elsewhere on the outcrop. However, climate change interactions with fire and water table declines may render our conclusions conservative. The LiDAR-based mapping approach presented enables the integration of site-based biotic assessment with structural vegetation types for the rapid delineation and prioritization of key refugia.


Assuntos
Biodiversidade , Mudança Climática , Fenômenos Fisiológicos Vegetais , Austrália , Geografia , Sedimentos Geológicos , Modelos Lineares , Chuva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA