Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
BMC Cancer ; 24(1): 105, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38342891

RESUMO

BACKGROUND: Histiocytoses are rare disorders manifested by increased proliferation of pathogenic myeloid cells sharing histological features with macrophages or dendritic cells and accumulating in various organs, i.a., bone and skin. Pre-clinical in vitro models that could be used to determine molecular pathways of the disease are limited, hence research on histiocytoses is challenging. The current study compares cytophysiological features of progenitor, stromal-like cells derived from histiocytic lesions (sl-pHCs) of three pediatric patients with different histiocytoses types and outcomes. The characterized cells may find potential applications in drug testing. METHODS: Molecular phenotype of the cells, i.e. expression of CD1a and CD207 (langerin), was determined using flow cytometry. Cytogenetic analysis included GTG-banded metaphases and microarray (aCGH) evaluation. Furthermore, the morphology and ultrastructure of cells were evaluated using a confocal and scanning electron microscope. The microphotographs from the confocal imaging were used to reconstruct the mitochondrial network and its morphology. Basic cytophysiological parameters, such as viability, mitochondrial activity, and proliferation, were analyzed using multiple cellular assays, including Annexin V/7-AAD staining, mitopotential analysis, BrdU test, clonogenicity analysis, and distribution of cells within the cell cycle. Biomarkers potentially associated with histiocytoses progression were determined using RT-qPCR at mRNA, miRNA and lncRNA levels. Intracellular accumulation of histiocytosis-specific proteins was detected with Western blot. Cytotoxicyty and IC50 of vemurafenib and trametinib were determined with MTS assay. RESULTS: Obtained cellular models, i.e. RAB-1, HAN-1, and CHR-1, are heterogenic in terms of molecular phenotype and morphology. The cells express CD1a/CD207 markers characteristic for dendritic cells, but also show intracellular accumulation of markers characteristic for cells of mesenchymal origin, i.e. vimentin (VIM) and osteopontin (OPN). In subsequent cultures, cells remain viable and metabolically active, and the mitochondrial network is well developed, with some distinctive morphotypes noted in each cell line. Cell-specific transcriptome profile was noted, providing information on potential new biomarkers (non-coding RNAs) with diagnostic and prognostic features. The cells showed different sensitivity to vemurafenib and trametinib. CONCLUSION: Obtained and characterized cellular models of stromal-like cells derived from histiocytic lesions can be used for studies on histiocytosis biology and drug testing.


Assuntos
Histiocitose de Células de Langerhans , Humanos , Criança , Histiocitose de Células de Langerhans/tratamento farmacológico , Histiocitose de Células de Langerhans/genética , Histiocitose de Células de Langerhans/diagnóstico , Vemurafenib , Macrófagos/metabolismo , Biomarcadores , Fenótipo , Antígenos CD , Lectinas Tipo C/metabolismo , Lectinas de Ligação a Manose/metabolismo
2.
Front Mol Biosci ; 10: 1214961, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38146533

RESUMO

Equine metabolic syndrome (EMS) is a steadily growing endocrine disorder representing a real challenge in veterinary practice. As a multifactorial condition, EMS is characterized by three main metabolic abnormalities including insulin resistance, increased adiposity or obesity and hoof laminitis. Adipose tissue dysfunction is recognized as a core pathophysiological determinant of EMS, as it strongly participates to lipotoxicity and systemic metaflammation, both of which have been closely linked to the development of generalized insulin resistance. Besides, sex hormone binding globulin (SHBG) is an important sex steroids transporters that has been recently proposed as an important metabolic mediator. Therefore, the aim of this study was to verify whether SHBG treatment may ameliorate subcutaneous adipose tissue metabolic failure under EMS condition in terms of lipidome homeostasis, lipid metabolism programs, insulin signalling and local inflammation. Subcutaneous adipose tissue (SAT) biopsies were collected post-mortem from healthy (n = 3) and EMS (n = 3) slaughtered horses. SHBG protein has been applied to SAT samples from EMS horses for 24 h at a final concentration of 50 nM, while control groups (healthy and untreated EMS) were cultured in the presence of SHBG-vehicle only. Tissues from all groups were afterwards secured for downstream analysis of gene expression using RT-qPCR, protein levels by Western blot and ELISA assay and lipidomics through GC-MS technique. Obtained results showcased that SHBG intervention efficiently normalized the altered fatty acids (FAs) profiles by lowering the accumulation of saturated and trans FAs, as well as the pro-inflammatory arachidonic and linoleic acids. Moreover, SHBG showed promising value for the regulation of adipocyte lipolysis and engorgement by lowering the levels of perilipin-1. SHBG exerted moderated effect toward SCD1 and FASN enzymes expression, but increased the LPL abundance. Interestingly, SHBG exhibited a negative regulatory effect on pro-adipogenic stimulators and induced higher expression of KLF3, IRF3 and ß-catenin, known as strong adipogenesis repressors. Finally, SHBG protein showed remarkable ability in restoring the insulin signal transduction, IR/IRS/Pi3K/AKT phosphorylation events and GLUT4 transporter abundance, and further attenuate pro-inflammatory response by lowering IL-6 tissue levels and targeting the PDIA3/ERK axis. Overall, the obtained data clearly demonstrate the benefice of SHBG treatment in the regulation of adipose tissue metabolism in the course of EMS and provide new insights for the development of molecular therapies with potential translational application to human metabolic disorders.

3.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37511204

RESUMO

Medicinal signaling cells (MSC) exhibit distinct molecular signatures and biological abilities, depending on the type of tissue they originate from. Recently, we isolated and described a new population of stem cells residing in the coronary corium, equine hoof progenitor cells (HPCs), which could be a new promising cell pool for the treatment of laminitis. Therefore, this study aimed to compare native populations of HPCs to well-established adipose-derived stem cells (ASCs) in standard culture conditions and in a pro-inflammatory milieu to mimic a laminitis condition. ASCs and HPCs were either cultured in standard conditions or subjected to priming with a cytokines cocktail mixture. The cells were harvested and analyzed for expression of key markers for phenotype, mitochondrial metabolism, oxidative stress, apoptosis, and immunomodulation using RT-qPCR. The morphology and migration were assessed based on fluorescent staining. Microcapillary cytometry analyses were performed to assess the distribution in the cell cycle, mitochondrial membrane potential, and oxidative stress. Native HPCs exhibited a similar morphology to ASCs, but a different phenotype. The HPCs possessed lower migration capacity and distinct distribution across cell cycle phases. Native HPCs were characterized by different mitochondrial dynamics and oxidative stress levels. Under standard culture conditions, HPCs displayed different expression patterns of apoptotic and immunomodulatory markers than ASCs, as well as distinct miRNA expression. Interestingly, after priming with the cytokines cocktail mixture, HPCs exhibited different mitochondrial dynamics than ASCs; however, the apoptosis and immunomodulatory marker expression was similar in both populations. Native ASCs and HPCs exhibited different baseline expressions of markers involved in mitochondrial dynamics, the oxidative stress response, apoptosis and inflammation. When exposed to a pro-inflammatory microenvironment, ASCs and HPCs differed in the expression of mitochondrial condition markers and chosen miRNAs.


Assuntos
Casco e Garras , Células-Tronco Mesenquimais , Animais , Cavalos , Tecido Adiposo/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco/metabolismo , Citocinas/metabolismo
4.
Materials (Basel) ; 15(11)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35683288

RESUMO

Osteoporosis is characterized by the reduction of bone mineral density and the weakness of the bone strength leading to fractures. Searching for new compounds that stimulate bone activity and their ability to reconstruct seems to be a promising tool in osteoporosis treatment. Here, we performed analyses comparing the impact of polyrhodanine (PRHD) and its derivatives on the viability (anti-proliferative tests), morphology and mitochondrial network (confocal microscopy) towards pre-osteoblasts (MC3T3-E1 cell line) and osteoclasts (4B12 cell line). Moreover, we assessed the expression of genes associated with the apoptosis, inflammation and osteogenic differentiation by qPCR technique. Our results clearly demonstrated that PRHD and its modification at ratio 10/90 significantly improves the pre-osteoblast's proliferative abilities, while reducing osteoclast function. The observed effects were strongly correlated with the cytoskeleton and mitochondrial network development and arrangement. Additionally, the expression profile of genes revealed enhanced apoptosis of osteoclasts in the case of PRHD and its modification at ratio 10/90. Moreover, in this case we also observed strong anti-inflammatory properties demonstrated by decreased expression of Il1b, Tnfa and Tgfb in pre-osteoblasts and osteoclasts. On the other hand, enhanced expression of the markers associated with bone remodeling, namely, osteopontin (OPN), osteocalcin (OCL) and alkaline phosphatase (ALP), seem to confirm the role of PRHD@MnFe2O4 in the promotion of differentiation of pre-osteoblasts through the ALP-OPN-OCL axis. Based on these observations, PRHD@MnFe2O4 could be a potential agent in osteoporosis treatment in future, however, further studies are still required.

5.
Materials (Basel) ; 15(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35329547

RESUMO

Due to its increased prevalence, osteoporosis (OP) represents a great challenge to health care systems and brings an economic burden. To overcome these issues, treatment plans that suit the need of patients should be developed. One of the approaches focuses on the fabrication of personalized biomaterials, which can restore the balance and homeostasis of disease-affected bone. In the presented study, we fabricated nanometer crystalline hydroxyapatite (nHAp) and iron oxide (IO) nanoparticles stabilized with APTES and investigated whether they can modulate bone cell metabolism and be useful in the fabrication of personalized materials for OP patients. Using a wide range of molecular techniques, we have shown that obtained nHAp@APTES promotes viability and RUNX-2 expression in osteoblasts, as well as reducing activity of critical proinflammatory cytokines while inhibiting osteoclast activity. Materials with APTES modified with nHAp incorporated with IO nanoparticles can be applied to support the healing of osteoporotic bone fractures as they enhance metabolic activity of osteoblasts and diminish osteoclasts' metabolism and inflammation.

6.
Stem Cell Res Ther ; 11(1): 4, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31900232

RESUMO

BACKGROUND: Progressive loss of cell functionality caused by an age-related impairment in cell metabolism concerns not only mature specialized cells but also its progenitors, which significantly reduces their regenerative potential. Adipose-derived stem cells (ASCs) are most commonly used in veterinary medicine as an alternative treatment option in ligaments and cartilage injuries, especially in case of high-value sport horses. Therefore, the main aim of this study was to identify the molecular alternations in ASCs derived from three age-matched horse groups: young (< 5), middle-aged (5-15), and old (> 15 years old). METHODS: ASCs were isolated from three age-matched horse groups using an enzymatic method. Molecular changes were assessed using qRT-PCR, ELISA and western blot methods, flow cytometry-based system, and confocal and scanning electron microscopy. RESULTS: Our findings showed that ASCs derived from the middle-aged and old groups exhibited a typical senescence phenotype, such as increased percentage of G1/G0-arrested cells, binucleation, enhanced ß-galactosidase activity, and accumulation of γH2AX foci, as well as a reduction in cell proliferation. Moreover, aged ASCs were characterized by increased gene expression of pro-inflammatory cytokines and miRNAs (interleukin 8 (IL-8), IL-1ß, tumor necrosis factor α (TNF-α), miR-203b-5p, and miR-16-5p), as well as apoptosis markers (p21, p53, caspase-3, caspase-9). In addition, our study revealed that the protein level of mitofusin 1 (MFN1) markedly decreased with increasing age. Aged ASCs also displayed a reduction in mRNA levels of genes involved in stem cell homeostasis and homing, like TET-3, TET-3 (TET family), and C-X-C chemokine receptor type 4 (CXCR4), as well as protein expression of DNA methyltransferase (DNMT1) and octamer transcription factor 3/4 (Oct 3/4). Furthermore, we observed a higher splicing ratio of XBP1 (X-box binding protein 1) mRNA, indicating elevated inositol-requiring enzyme 1 (IRE-1) activity and, consequently, increased endoplasmic reticulum (ER) stress. We also observed reduced levels of glucose transporter 4 (GLUT-4) and insulin receptor (INSR) which indicated impaired insulin sensitivity. CONCLUSIONS: Obtained data suggest that ASCs derived from horses older than 5 years old exhibited several molecular alternations which markedly limit their regenerative capacity. The results provide valuable information that allows for a better understanding of the molecular events occurring in ASCs in the course of aging and may help to identify new potential drug targets to restore their regenerative potential.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Células-Tronco/metabolismo , Adolescente , Adulto , Fatores Etários , Animais , Criança , Pré-Escolar , Cavalos , Humanos , Lactente , Adulto Jovem
7.
Tumour Biol ; 39(10): 1010428317727164, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29034815

RESUMO

Currently higher morbidity and mortality rates are observed in cancer diseases, especially sex-dependent cancers. A positive role of endogenous vitamin D concentration in cancer diseases has been reported in many publications. Furthermore, there has been observed a relationship between serum vitamin D and testosterone concentrations in an elderly Caucasian population carrying the vitamin D receptor FokI gene polymorphism. The aim of this study was to investigate whether the vitamin D receptor FokI polymorphism is associated with cancerogenesis in sex-dependent cancers. The MEDLINE and ResearchGate databases were used to search for articles up to January 2017, and 96 articles concerning the FokI polymorphism were chosen. Odds ratios with 95% confidence intervals were used to assess the strength of associations between polymorphisms of vitamin D receptor and cancer risk in the described populations. The fixed-effects model and the DerSimonian-Laird random-effects model (with weights based on the inverse variance) were used to calculate summary odds ratios, and both within- and between-study variation were considered. Generally, the F variant reduces the risk of cancer by 4% (odds ratio = 0.96, p value = 0.0057). This effect is particularly evident in female sex-associated cancers (odds ratio = 0.96, 95% confidence interval: 0.93-0.99, p value = 0.0259), but it is not observed in non-sex-associated cancers. Polymorphism FokI is associated with breast and ovarian cancers.


Assuntos
Desoxirribonucleases de Sítio Específico do Tipo II/genética , Neoplasias/genética , Polimorfismo Genético/genética , Receptores de Calcitriol/genética , Alelos , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença/genética , Genótipo , Humanos , Masculino , Razão de Chances , Fatores de Risco , Vitamina D/genética , População Branca/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA