Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Planta Med ; 85(11-12): 1024-1033, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31261420

RESUMO

Halimium halimifolium (Hh) is a shrub used in Algerian folk medicine to treat gastrointestinal pain. An UHPLC-PDA-ESI/MSn method was developed to identify the metabolic profile of the traditionally used infusion (Hh-A) from the aerial parts. The structures of flavanols were confirmed by NMR analysis after the isolation procedure from a hydrohalcolic extract (Hh-B) that also allowed for the identification of phenolic acids, an aryl butanol glucoside, and different derivatives of quercetin, myricetin, and kaempferol. Tiliroside isomers were the chemical markers of Hh-A and Hh-B (54.33 and 36.00 mg/g, respectively). Hh-A showed a significant scavenging activity both against the radicals 1,1-diphenyl-2-picrylhydrazyl and 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (EC50 = 10.49 µg/mL and TEAC value = 1.98 mM Trolox/mg infusion) and the lipopolysaccharide-induced reactive oxygen species release in A375 and HeLa cells. Moreover, the antihyperglycemic properties, by inhibiting the α-amylase and α-glucosidase enzymes (IC50 = 0.82 mg/mL and 25.01 µg/mL, respectively), were demonstrated. To upgrade the therapeutic effect, a microencapsulation process is proposed as a strategy to optimize stability, handling, and delivery of bioactive components, avoiding the degradation and loss of the biological efficacy after oral intake. Hh-loaded microparticles were designed using cellulose acetate phthalate as the enteric coating material and spray drying as a production process. The results showed a satisfactory process yield (67.9%), encapsulation efficiency (96.7%), and micrometric characteristics of microparticles (laser-scattering, fluorescent, and scanning electron microscopy). In vitro dissolution studies (USPII-pH change method) showed that Hh-loaded microparticles are able to prevent the release and degradation of the bioactive components in the gastric tract, releasing them into the intestinal environment.


Assuntos
Cistaceae/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Linhagem Celular , Cistaceae/metabolismo , Suplementos Nutricionais , Composição de Medicamentos , Células HeLa , Humanos , Hipoglicemiantes/isolamento & purificação , Hipoglicemiantes/farmacologia , Espectroscopia de Ressonância Magnética , Medicinas Tradicionais Africanas , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Plantas Medicinais/metabolismo
2.
Nat Prod Res ; 29(7): 671-5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25422072

RESUMO

Thymelaea microphylla Coss. et Dur. (Thymelaeaceae) is a rare medicinal plant endemic to Algeria. In order to continue our studies on this species, herein we report the isolation and characterisation of 20 compounds from a hydroalcoholic extract (EtOH-H2O 7:3) of the aerial parts. They include monoterpene glucosides (1-3), phenolic acid derivatives (4, 8 and 9), phenylpropanoid glucosides (5 and 6), flavonoids (7, 10 and 11), a benzyl alcohol glucoside (12), ionol glucosides (13-16), lignans (17-19) and a bis-coumarin (20). All the structures were elucidated by spectroscopic methods including 1D and 2D NMR experiments, as well as ESI-MS analysis. Moreover, the extract of T. microphylla showed a significant and concentration-dependent free radical-scavenging activity in vitro, correlated to the presence of phenolic and chlorogenic acid derivatives (8, 9 and 4).


Assuntos
Sequestradores de Radicais Livres/análise , Fenóis/análise , Extratos Vegetais/química , Thymelaeaceae/química , Cumarínicos/análise , Flavonoides/análise , Glucosídeos/análise , Estrutura Molecular , Componentes Aéreos da Planta/química , Plantas Medicinais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA