RESUMO
Neonicotinoids are neurotoxic insecticides and are often released into nearby wetlands via subsurface tile drains and can negatively impact nontarget organisms, such as amphibians. Previous studies have indicated that imidacloprid, a commonly used neonicotinoid, can cross the amphibian blood-brain barrier under laboratory conditions; however, little is known about the impact of low concentrations in a field-based setting. Here, we report aqueous pesticide concentrations at wetland production areas that were either connected or not connected to agricultural tile drains, quantified imidacloprid and its break down products in juvenile amphibian brains and livers, and investigated the relationship between imidacloprid brain concentration and brain size. Imidacloprid concentrations in brain and water samples were nearly 2.5 and 5 times higher at tile wetlands (brain = 4.12 ± 1.92 pg/mg protein; water = 0.032 ± 0.045 µg/L) compared to reference wetlands, respectively. Tile wetland amphibians also had shorter cerebellums (0.013 ± 0.001 mm), depicting a negative relationship between imidacloprid brain concentration and cerebellum length. The metabolite, desnitro-imidacloprid, had liver concentrations that were 2 times higher at tile wetlands (2 ± 0.3 µg/g). Our results demonstrate that imidacloprid can cross the amphibian blood-brain barrier under ecological conditions and may alter brain dimensions and provide insight into the metabolism of imidacloprid in amphibians.
Assuntos
Inseticidas , Poluentes Químicos da Água , Animais , Rana pipiens , Poluentes Químicos da Água/análise , Neonicotinoides , Nitrocompostos , Encéfalo , ÁguaRESUMO
Ranavirosis is a disease of high concern for amphibians due to widespread documentation of its lethal and sublethal impacts and its high transmission potential across populations and species. We investigated whether spotted salamander (Ambystoma maculatum) ranavirus prevalence and viral load were associated with habitat characteristics, genetic diversity, corticosterone levels, and body size. In 2015 and 2016, we sampled 34 recently created vernal pools in the Monongahela National Forest, West Virginia, USA. We collected tail clippings from 1,128 spotted salamander larvae and waterborne hormone samples from 436 of those larvae, along with eight environmental characteristics of the pools. Over the 2-yr period, we detected ranavirus in 62% of pools, with prevalence ranging from 0% to 63% (mean, 7.68%). Spotted salamander size was positively correlated with ranavirus presence and viral load; however, we did not find associations between ranavirus prevalence or viral load and habitat characteristics, spotted salamander genetic diversity, relatedness, effective number of breeders, or corticosterone levels. The widespread occurrence of ranavirus in the vernal pools illustrates the potential for rapid natural introduction of the pathogen to created wetlands. Managers could consider monitoring local distributions of ranavirus before creation of new vernal pools to guide strategic placement of the wetlands to minimize occurrence and prevalence of this pathogen.
Assuntos
Infecções por Vírus de DNA , Ranavirus , Animais , Ambystoma , Larva , Prevalência , West Virginia , Corticosterona , Infecções por Vírus de DNA/veterináriaRESUMO
As powerful computational tools and 'big data' transform the biological sciences, bioinformatics training is becoming necessary to prepare the next generation of life scientists. Furthermore, because the tools and resources employed in bioinformatics are constantly evolving, bioinformatics learning materials must be continuously improved. In addition, these learning materials need to move beyond today's typical step-by-step guides to promote deeper conceptual understanding by students. One of the goals of the Network for Integrating Bioinformatics into Life Sciences Education (NIBSLE) is to create, curate, disseminate, and assess appropriate open-access bioinformatics learning resources. Here we describe the evolution, integration, and assessment of a learning resource that explores essential concepts of biological sequence similarity. Pre/post student assessment data from diverse life science courses show significant learning gains. These results indicate that the learning resource is a beneficial educational product for the integration of bioinformatics across curricula.
Assuntos
Biologia Computacional/métodos , Educação a Distância , Aprendizagem , Big Data , Disciplinas das Ciências Biológicas/educação , Simulação por Computador , Currículo , Escolaridade , Humanos , Modelos Lineares , Planejamento Social , EstudantesRESUMO
Ongoing investigations into the interactions between microbial communities and their associated hosts are changing how emerging diseases are perceived and ameliorated. Of the numerous host-microbiome-disease systems of study, the emergence of chytridiomycosis (caused by Batrachochytrium dendrobatidis, hereafter Bd) has been implicated in ongoing declines and extinction events of amphibians worldwide. Interestingly, there has been differential survival among amphibians in resisting Bd infection and subsequent disease. One factor thought to contribute to this resistance is the host-associated cutaneous microbiota. This has raised the possibility of using genetically modified probiotics to restructure the host-associated microbiota for desired anti-fungal outcomes. Here, we use a previously described strain of Serratia marcescens (Sm) for the manipulation of amphibian cutaneous microbiota. Sm was genetically altered to have a dysfunctional pathway for the production of the extracellular metabolite prodigiosin. This genetically altered strain (Δpig) and the functional prodigiosin producing strain (wild-type, WT) were compared for their microbial community and anti-Bd effects both in vitro and in vivo. In vitro, Bd growth was significantly repressed in the presence of prodigiosin. In vivo, the inoculation of both Sm strains was shown to significantly influence amphibian microbiota diversity with the Δpig-Sm treatment showing increasing alpha diversity, and the WT-Sm having no temporal effect on diversity. Differences were also seen in host mortality with Δpig-Sm treatments exhibiting significantly decreased survival probability when compared with WT-Sm in the presence of Bd. These results are an important proof-of-concept for linking the use of genetically modified probiotic bacteria to host microbial community structure and disease outcomes, which in the future may provide a way to ameliorate disease and address critical frontiers in disease and microbial ecology.
Assuntos
Anfíbios/microbiologia , Serratia marcescens/fisiologia , Animais , Quitridiomicetos/fisiologia , Microbiota , Micoses/microbiologia , Pele/microbiologiaRESUMO
Chytridiomycosis, an infectious disease caused by the fungus Batrachochytrium dendrobatidis (chytrid or Bd), has not been well studied in Oklahoma. This is of particular concern regarding the connection between seasonality and chytrid infection. To further investigate this connection, chytrid prevalence and infection load were quantified within amphibians in central Oklahoma from March to October, across two sites in Oklahoma Co. and two sites in Cleveland Co. The results show a trend between seasonality and chytrid, with spring and fall showing higher prevalence and summer showing lower prevalence, which coincides closely with the preferred chytrid growth temperatures. Additionally, periods of high rainfall in May 2015 are linked to increased chytrid prevalence, as has been suggested by other research. Additionally, species exhibiting high chytrid prevalence follow the results of previous studies: Blanchard's cricket frog (Acris blanchardi), American bullfrog (Rana catesbeiana), and southern leopard frog (Rana sphenocephala).
Assuntos
Anuros/microbiologia , Quitridiomicetos/isolamento & purificação , Animais , Micoses/epidemiologia , Micoses/microbiologia , Oklahoma/epidemiologia , Prevalência , Estações do Ano , Tempo (Meteorologia)RESUMO
Animal-associated microbiomes are integral to host health, yet key biotic and abiotic factors that shape host-associated microbial communities at the global scale remain poorly understood. We investigated global patterns in amphibian skin bacterial communities, incorporating samples from 2,349 individuals representing 205 amphibian species across a broad biogeographic range. We analysed how biotic and abiotic factors correlate with skin microbial communities using multiple statistical approaches. Global amphibian skin bacterial richness was consistently correlated with temperature-associated factors. We found more diverse skin microbiomes in environments with colder winters and less stable thermal conditions compared with environments with warm winters and less annual temperature variation. We used bioinformatically predicted bacterial growth rates, dormancy genes and antibiotic synthesis genes, as well as inferred bacterial thermal growth optima to propose mechanistic hypotheses that may explain the observed patterns. We conclude that temporal and spatial characteristics of the host's macro-environment mediate microbial diversity.
Assuntos
Anuros/microbiologia , Clima , Microbiota , Urodelos/microbiologia , Animais , Bactérias/classificação , Fenômenos Fisiológicos Bacterianos , Pele/microbiologiaRESUMO
The chytrid fungus Batrachochytrium dendrobatidis (Bd), the causal agent of the amphibian disease chytridiomycosis, has spread at an alarming rate since its discovery. Bd was initially thought to only infect keratinizing epithelial cells in amphibians, a core component of amphibian skin. However, recent studies have detected Bd on the integument of non-amphibian hosts. We conducted a survey of 3 duck species (gadwalls, green-winged teals, and mallards) to determine whether Bd DNA could be found on their feet. Bd was found on the feet, by quantitative PCR, of individuals from all 3 species (5/11 gadwalls, 4/8 green-winged teals, and 13/21 mallards), though there were no significant differences in zoospore presence or load between species. We conclude that these waterfowl species may act as vector hosts for Bd, adding to the growing list of potential waterfowl vectors. Future studies are needed to determine whether Bd on waterfowl feet is viable and infectious to amphibian hosts.
Assuntos
Quitridiomicetos , Patos/microbiologia , Pele/microbiologia , AnimaisRESUMO
Global amphibian declines and extinction events are occurring at an unprecedented rate. While several factors are responsible for declines and extinction, the fungal pathogen Batrachochytrium dendrobatidis (Bd) has been cited as a major constituent in these events. While the effects of this chytrid fungus have been shown to cause broad scale population declines and extinctions, certain individuals and relict populations have shown resistance. This resistance has been attributed in part to the cutaneous bacterial microbiome. Here, we present the first study characterizing anti-Bd bacterial isolates from amphibian populations in Costa Rica, including the characterization of two strains of Serratia marcescens presenting strong anti-Bd activity. Transcriptome sequencing was utilized for delineation of shifts in gene expression of the two previously uncharacterized strains of S. marcescens grown in three different treatments comprising Bd, heat-killed Bd, and a no Bd control. These results revealed up- and down-regulation of key genes associated with different metabolic and regulatory pathways. This information will be valuable in continued efforts to develop a bacterial-based approach for amphibian protection as well as providing direction for continued mechanistic inquiries of the bacterial anti-Bd response.
RESUMO
The fields of behavioral ecology, conservation science, and environmental toxicology individually aim to protect and manage the conservation of wildlife in response to anthropogenic stressors, including widespread anthropogenic pollution. Although great emphasis in the field of toxicology has been placed on understanding how single pollutants affect survival, a comprehensive, interdisciplinary approach that includes behavioral ecology is essential to address how anthropogenic compounds are a risk for the survival of species and populations in an increasingly polluted world. We provide an integrative framework for behavioral ecotoxicology using Tinbergen's four postulates (causation and mechanism, development and ontogeny, function and fitness, and evolutionary history and phylogenetic patterns). The aims of this review are: 1) to promote an integrative view and re-define the field of integrative behavioral ecotoxicology; 2) to demonstrate how studying ecotoxicology can promote behavior research; and 3) to identify areas of behavioral ecotoxicology that require further attention to promote the integration and growth of the field.
RESUMO
Accurate pathogen detection is essential for developing management strategies to address emerging infectious diseases, an increasingly prominent threat to wildlife. Sampling for free-living pathogens outside of their hosts has benefits for inference and study efficiency, but is still uncommon. We used a laboratory experiment to evaluate the influences of pathogen concentration, water type, and qPCR inhibitors on the detection and quantification of Batrachochytrium dendrobatidis (Bd) using water filtration. We compared results pre- and post-inhibitor removal, and assessed inferential differences when single versus multiple samples were collected across space or time. We found that qPCR inhibition influenced both Bd detection and quantification in natural water samples, resulting in biased inferences about Bd occurrence and abundance. Biases in occurrence could be mitigated by collecting multiple samples in space or time, but biases in Bd quantification were persistent. Differences in Bd concentration resulted in variation in detection probability, indicating that occupancy modeling could be used to explore factors influencing heterogeneity in Bd abundance among samples, sites, or over time. Our work will influence the design of studies involving amphibian disease dynamics and studies utilizing environmental DNA (eDNA) to understand species distributions.
RESUMO
The fungal pathogen Batrachochytrium dendrobatidis (Bd) has caused the greatest known wildlife pandemic, infecting over 500 amphibian species. It remains unclear why some host species decline from disease-related mortality whereas others persist. We introduce a conceptual model that predicts that infection risk in ectotherms will decrease as the difference between host and pathogen environmental tolerances (i.e. tolerance mismatch) increases. We test this prediction using both local-scale data from Costa Rica and global analyses of over 11 000 Bd infection assays. We find that infection prevalence decreases with increasing thermal tolerance mismatch and with increasing host tolerance of habitat modification. The relationship between environmental tolerance mismatches and Bd infection prevalence is generalisable across multiple amphibian families and spatial scales, and the magnitude of the tolerance mismatch effect depends on environmental context. These findings may help explain patterns of amphibian declines driven by a global wildlife pandemic.
Assuntos
Anfíbios , Quitridiomicetos/fisiologia , Dermatomicoses/veterinária , Interações Hospedeiro-Patógeno , Modelos Biológicos , Animais , Dermatomicoses/epidemiologia , Dermatomicoses/microbiologia , Meio Ambiente , Fatores de RiscoRESUMO
The amphibian disease chytridiomycosis, caused by the pathogenic fungus Batrachochytrium dendrobatidis (Bd), has been linked to significant amphibian declines over the past three decades. The most severe effects of the pathogen have been primarily observed in relatively pristine areas that are not affected by many anthropogenic factors.One hypothesis concerning improved amphibian persistence with Bd in disturbed landscapes is that contaminants may abate the effects of Bd on amphibians. Recent laboratory studies have shown that pesticides, specifically the fungicide thiophanate-methyl (TM), can kill Bd outside of hosts and clear Bd infections within hosts. Using aquatic mesocosms, we tested the hypothesis that TM (0.43 mg/L) would alter growth and development of Lithobates sphenocephalus (southern leopard frog) tadpoles and Bd-infection loads in infected individuals. We hypothesized that the scope of such alterations and infection clearing would be affected by aquatic community variables, specifically zooplankton. TM altered zooplankton diversity (reduced cladoceran and increased copepod and ostracod abundances) and caused mortality to all tadpoles in TM-exposed tanks. In TM-free tanks, Bd-exposed tadpoles in high-density treatments metamorphosed smaller than Bd-unexposed, effects that were reversed in low-density treatments. Our study demonstrates the potential adverse effects of a fungicide and Bd on tadpoles and aquatic systems.
Assuntos
Quitridiomicetos/fisiologia , Fungicidas Industriais/toxicidade , Rana pipiens/crescimento & desenvolvimento , Poluentes Químicos da Água/toxicidade , Áreas Alagadas , Animais , Conservação dos Recursos Naturais , Feminino , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/microbiologia , Metamorfose Biológica/efeitos dos fármacos , Rana pipiens/microbiologia , ZooplânctonRESUMO
Wildlife epidemiological outcomes can depend strongly on the composition of an ecological community, particularly when multiple host species are affected by the same pathogen. However, the relationship between host species richness and disease risk can vary with community context and with the degree of spillover transmission that occurs among co-occurring host species. We examined the degree to which host species composition influences infection by Batrachochytrium dendrobatidis (Bd), a widespread fungal pathogen associated with amphibian population declines around the world, and whether transmission occurs from one highly susceptible host species to other co-occurring host species. By manipulating larval assemblages of three sympatric amphibian species in the laboratory, we characterized the relationship between host species richness and infection severity, whether infection mediates growth and survivorship differently across various combinations of host species, and whether Bd is transmitted from experimentally inoculated tadpoles to uninfected tadpoles. We found evidence of a dilution effect where Bd infection severity was dramatically reduced in the most susceptible of the three host species (Anaxyrus boreas). Infection also mediated survival and growth of all three host species such that the presence of multiple host species had both positive (e.g., infection reduction) and negative (e.g., mortality) effects on focal species. However, we found no evidence that Bd infection is transmitted by this species. While these results demonstrate that host species richness as well as species identity underpin infection dynamics in this system, dilution is not the product of reduced transmission via fewer infectious individuals of a susceptible host species. We discuss various mechanisms, including encounter reduction and antagonistic interactions such as competition and opportunistic cannibalism that may act in concert to mediate patterns of infection severity, growth, and mortality observed in multihost communities.
RESUMO
Two factors that influence amphibian population declines are infectious diseases and exposure to anthropogenic contaminants. The authors examined an emerging fungal pathogen, Batrachochytrium dendrobatidis (Bd), and its interaction with an emerging contaminant, the antimicrobial triclosan. They first conducted a 2 × 2 × 4 factorial study to examine the interactive impacts of dragonfly predator cues, Bd, and triclosan (0 µg/L, 10 µg/L, 100 µg/L, and 1000 µg/L) on Woodhouse's toad (Anaxyrus woodhousii) tadpoles. The authors measured the lethal and sublethal impacts of these stressors on tadpoles over 4 wk. All tadpoles in the 100-µg/L and 1000-µg/L concentrations of triclosan died within 24 h of exposure, but tadpoles in the low concentration (10 µg/L) survived. Tadpoles exposed to only Bd (no triclosan) exhibited a low survival rate (67.5%), whereas those exposed to both 10 µg/L triclosan and Bd exhibited a high survival rate (91.1%), implying that triclosan inhibits effects of Bd on tadpoles. Batrachochytrium dendrobatidis and predator cue exposure individually increased the developmental rate of the surviving tadpoles, but this effect was absent when these factors were combined with triclosan. In a follow-up study, the authors found Bd growth in culture was significantly inhibited at the 10-µg/L concentration of triclosan and completely inhibited at 100 µg/L. These findings suggest that interactions among multiple stressors can be complex and require examination in conjunction with one another to evaluate actual impacts to aquatic fauna.
Assuntos
Antibacterianos/toxicidade , Bufonidae/microbiologia , Quitridiomicetos , Poluentes Ambientais/toxicidade , Triclosan/toxicidade , Animais , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/microbiologia , Odonatos/fisiologia , Comportamento PredatórioRESUMO
Amphibian populations are globally threatened by emerging infectious diseases, and 2 pathogens in particular are recognized as major threats: the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) and ranaviruses. Here, we evaluated the prevalence of infection by Bd and ranavirus in an assemblage of frogs from a lowland wet forest in Costa Rica. We found an overall prevalence of 21.3% for Bd and 16.6% for ranavirus, and detected both pathogens widely among our 20 sampled species. We found a positive association between ranavirus and Bd infection in one of our 4 most commonly sampled species. We also found a positive but non-significant association between infection by ranavirus and infection by Bd among species overall. Our study is among the first detailed evaluations of ranavirus prevalence in the American tropics, and to our knowledge is the first to detect a positive association between Bd and ranavirus in any species. Considerable research attention has focused on the ecology of Bd in tropical regions, yet we argue that greater research focus is necessary to understand the ecology and conservation impact of ranaviruses on amphibian populations already decimated by the emergence of Bd.
Assuntos
Quitridiomicetos/isolamento & purificação , Infecções por Vírus de DNA/veterinária , Micoses/veterinária , Ranavirus/isolamento & purificação , Ranidae/microbiologia , Ranidae/virologia , Animais , Costa Rica , Infecções por Vírus de DNA/epidemiologia , Infecções por Vírus de DNA/virologia , Micoses/epidemiologia , Micoses/microbiologiaRESUMO
Amphibians are often exposed to a wide variety of perturbations. Two of these, pesticides and pathogens, are linked to declines in both amphibian health and population viability. Many studies have examined the separate effects of such perturbations; however, few have examined the effects of simultaneous exposure of both to amphibians. In this study, we exposed larval southern leopard frog tadpoles (Lithobates sphenocephalus) to the chytrid fungus Batrachochytrium dendrobatidis and the fungicide thiophanate-methyl (TM) at 0.6 mg/L under laboratory conditions. The experiment was continued until all larvae completed metamorphosis or died. Overall, TM facilitated increases in tadpole mass and length. Additionally, individuals exposed to both TM and Bd were heavier and larger, compared to all other treatments. TM also cleared Bd in infected larvae. We conclude that TM affects larval anurans to facilitate growth and development while clearing Bd infection. Our findings highlight the need for more research into multiple perturbations, specifically pesticides and disease, to further promote amphibian heath.
Assuntos
Quitridiomicetos/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Rana pipiens/crescimento & desenvolvimento , Tiofanato/farmacologia , Animais , Quitridiomicetos/crescimento & desenvolvimento , Feminino , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/microbiologia , Masculino , Metamorfose Biológica/efeitos dos fármacos , Análise Multivariada , Rana pipiens/microbiologia , Fatores de TempoRESUMO
The chytrid fungus Batrachochytrium dendrobatidis, ranaviruses, and trematodes (Ribeiroia ondatrae and echinostomes) are highly virulent pathogens known to infect amphibians, yet the extent to which they co-occur within amphibian communities remains poorly understood. Using field surveillance of 85 wetlands in the East Bay region of California, USA, we found that 68% of wetlands had ≥2 pathogens and 36% had ≥3 pathogens. Wetlands with high pathogen species richness also tended to cluster spatially. Our results underscore the need for greater integration of multiple pathogens and their interactions into amphibian disease research and conservation efforts.
Assuntos
Anfíbios/microbiologia , Anfíbios/parasitologia , Virulência , Animais , California/epidemiologia , Quitridiomicetos/isolamento & purificação , Coinfecção/epidemiologia , Coinfecção/veterinária , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/veterinária , Parasitos/isolamento & purificação , Parasitos/patogenicidade , Ranavirus/isolamento & purificação , Ranavirus/patogenicidade , Áreas AlagadasRESUMO
The immune system is a necessary, but potentially costly, defense against infectious diseases. When nutrition is limited, immune activity may consume a significant amount of an organism's energy budget. Levels of dietary protein affect immune system function; high levels can enhance disease resistance. We exposed southern leopard frog [Lithobates sphenocephalus (=Rana sphenocephala)] tadpoles to high and low protein diets crossed with the presence or absence of the pathogenic amphibian chytrid fungus (Batrachochytrium dendrobatidis; Bd) and quantified: (1) tadpole resistance to Bd; (2) tadpole skin-swelling in response to phytohaemagglutinin (PHA) injection (a measure of the T cell-mediated response of the immune system); (3) bacterial killing ability (BKA) of tadpole blood (a measure of the complement-mediated cytotoxicity of the innate immune system); and (4) tadpole growth and development. Tadpoles raised on a low-protein diet were smaller and less developed than tadpoles on a high-protein diet. When controlled for developmental stage, tadpoles raised on a low-protein diet had reduced PHA and BKA responses relative to tadpoles on a high-protein diet, but these immune responses were independent of Bd exposure. High dietary protein significantly increased resistance to Bd. Our results support the general hypothesis that host condition can strongly affect disease resistance; in particular, fluctuations in dietary protein availability may change how diseases affect populations in the field.
Assuntos
Proteínas Alimentares/farmacologia , Resistência à Doença/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Ranidae/imunologia , Doenças dos Animais/imunologia , Animais , Quitridiomicetos , Larva/crescimento & desenvolvimento , Larva/imunologia , Larva/microbiologia , Micoses/imunologia , Ranidae/crescimento & desenvolvimento , Ranidae/microbiologiaRESUMO
Differences in host behavior and resistance to disease can influence the outcome of host-pathogen interactions. We capitalized on the variation in aggregation behavior of Fowler's toads (Anaxyrus [â=âBufo] fowleri) and grey treefrogs (Hyla versicolor) tadpoles and tested for differences in transmission of Batrachochytrium dendrobatidis (Bd) and host-specific fitness consequences (i.e., life history traits that imply fitness) of infection in single-species amphibian mesocosms. On average, A. fowleri mesocosms supported higher Bd prevalences and infection intensities relative to H. versicolor mesocosms. Higher Bd prevalence in A. fowleri mesocosms may result, in part, from higher intraspecific transmission due to the aggregation of tadpoles raised in Bd treatments. We also found that, independent of species, tadpoles raised in the presence of Bd were smaller and less developed than tadpoles raised in disease-free conditions. Our results indicate that aggregation behavior might increase Bd prevalence and that A. fowleri tadpoles carry heavier infections relative to H. versicolor tadpoles. However, our results demonstrate that Bd appears to negatively impact larval growth and developmental rates of A. fowleri and H. versicolor similarly, even in the absence of high Bd prevalence.