Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Mol Oncol ; 18(4): 969-987, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38327091

RESUMO

Immunotherapies for malignant melanoma seek to boost the anti-tumoral response of CD8+ T cells, but have a limited patient response rate, in part due to limited tumoral immune cell infiltration. Genetic or pharmacological inhibition of the pannexin 1 (PANX1) channel-forming protein is known to decrease melanoma cell tumorigenic properties in vitro and ex vivo. Here, we crossed Panx1 knockout (Panx1-/-) mice with the inducible melanoma model BrafCA, PtenloxP, Tyr::CreERT2 (BPC). We found that deleting the Panx1 gene in mice does not reduce BRAF(V600E)/Pten-driven primary tumor formation or improve survival. However, tumors in BPC-Panx1-/- mice exhibited a significant increase in the infiltration of CD8+ T lymphocytes, with no changes in the expression of early T-cell activation marker CD69, lymphocyte activation gene 3 protein (LAG-3) checkpoint receptor, or programmed cell death ligand-1 (PD-L1) in tumors when compared to the BPC-Panx1+/+ genotype. Our results suggest that, although Panx1 deletion does not overturn the aggressive BRAF/Pten-driven melanoma progression in vivo, it does increase the infiltration of effector immune T-cell populations in the tumor microenvironment. We propose that PANX1-targeted therapy could be explored as a strategy to increase tumor-infiltrating lymphocytes to boost anti-tumor immunity.


Assuntos
Melanoma , Neoplasias Cutâneas , Animais , Camundongos , Linfócitos T CD8-Positivos/metabolismo , Conexinas/genética , Conexinas/uso terapêutico , Linfócitos do Interstício Tumoral , Melanoma/patologia , Proteínas do Tecido Nervoso/genética , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/patologia , Microambiente Tumoral
2.
J Neuroimmunol ; 387: 578267, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38155065

RESUMO

Anti-CD20 B cell depleting therapies have demonstrated that B cells are important drivers of disease progress in Multiple Sclerosis, although the pathogenic mechanisms are not well understood. A population of B cells accumulates in the inflamed meninges in MS and also some chronic animal models of disease, typically adjacent to demyelinating lesions. The role of these meningeal B cells in disease is not known, nor is their susceptibility to anti-CD20 therapy. Here, we administered anti-CD20 to 2D2 IgHMOG spontaneous experimental autoimmune encephalomyelitis mice in the chronic phase of disease, after the establishment of meningeal B cell clusters. Compared to the circulation, lymph nodes, and spleen, B cell depletion from the meninges was delayed and not evident until 7d post-administration of anti-CD20. Further, we did not find evidence that anti-CD20 accessed meningeal B cells directly, but rather that depletion was indirect and the result of ongoing turnover of the meningeal population and elimination of the peripheral pool from which it is sustained.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Autoimunidade , Antígenos CD20 , Sistema Nervoso Central , Linfócitos B , Meninges , Anticorpos
3.
Gastroenterology ; 164(4): 593-609.e13, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36634827

RESUMO

BACKGROUND & AIMS: Colorectal cancer is a leading cause of cancer death, and a major risk factor is chronic inflammation. Despite the link between colitis and cancer, the mechanism by which inflammation leads to colorectal cancer is not well understood. METHODS: To investigate whether different forms of inflammation pose the same risk of cancer, we compared several murine models of colitis (dextran sodium sulfate [DSS], 2,4,6-trinitrobenzene sulfonic acid, 4-ethoxylmethylene-2-phenyloxazol-5-one, Citrobacter rodentium, Fusobacterium nucleatum, and doxorubicin) with respect to their ability to lead to colonic tumorigenesis. We attempted to correlate the severity of colitis and inflammatory profile with the risk of tumorigenesis in both azoxymethane-dependent and Dclk1/APCfl/fl murine models of colitis-associated cancer. RESULTS: DSS colitis reproducibly led to colonic tumors in both mouse models of colitis-associated cancer. In contrast, all other forms of colitis did not lead to cancer. When compared with the colitis not associated with tumorigenesis, DSS colitis was characterized by significantly increased CD11b+F4/80+Ly6Chigh macrophages and CD11b+Ly6G+ neutrophils. Interestingly, depletion of the CD11b+F4/80+Ly6Chigh macrophages inhibited tumorigenesis, whereas depletion of CD11b+Ly6G+ neutrophils had no effect on tumorigenesis. Furthermore, the macrophage-derived cytokines interleukin-1ß, tumor necrosis factor-α, and interleukin-6 were significantly increased in DSS colitis and promoted stemness of Dclk1+ tuft cells that serve as the cellular origin of cancer. CONCLUSIONS: We have identified CD11b+F4/80+Ly6Chigh macrophages as key mediators of cancer initiation in colitis-associated cancer. Development of new therapies that target these cells may provide an effective preventative strategy for colitis-associated cancer.


Assuntos
Neoplasias Associadas a Colite , Colite , Animais , Camundongos , Azoximetano , Carcinogênese/metabolismo , Plasticidade Celular , Colite/induzido quimicamente , Colite/complicações , Colite/metabolismo , Neoplasias Associadas a Colite/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL
4.
J Immunol ; 209(9): 1703-1712, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36122934

RESUMO

Interactions with Ag-specific T cells drive B cell activation and fate choices that ultimately determine the quality of high-affinity Ab responses. As such, these interactions, and especially the long-lived interactions that occur before germinal center formation, may be important checkpoints to regulate undesirable responses. Using mouse model Ag systems, we directly observed interactions between T and B cells responding to the self-antigen myelin oligodendrocyte glycoprotein (MOG) and found that they are of lower quality compared with interactions between cells responding to the model foreign Ag nitrophenyl-haptenated OVA. This was associated with reduced expression of molecules that facilitate these interactions on the B cells, but not on T cells. B cell expression of these molecules was not dictated by the T cell partner, nor could the relative lack of expression on MOG-specific (MOG-sp.) B cells be reversed by a multivalent Ag. Instead, MOG-sp. B cells were inherently less responsive to BCR stimulation than MOG-non-sp. cells. However, the phenotype of MOG-sp. B cells was not consistent with previous descriptions of autoimmune B cells that had been tolerized via regular exposure to systemically expressed self-antigen. This suggests that alternate anergy pathways may exist to limit B cell responses to tissue-restricted self-antigens.


Assuntos
Encefalomielite Autoimune Experimental , Linfócitos T , Animais , Camundongos , Autoantígenos , Centro Germinativo/metabolismo , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito , Linfócitos B
5.
Mult Scler J Exp Transl Clin ; 8(2): 20552173221086662, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571974

RESUMO

Background: Patients with MS have an altered gut microbiota compared to healthy individuals, as well as elevated small intestinal permeability, which may be contributing to the development and progression of the disease. Objective: We sought to investigate if fecal microbiota transplantation was safe and tolerable in MS patients and if it could improve abnormal intestinal permeability. Methods: Nine patients with MS were recruited and provided monthly FMTs for up to six months. The primary outcome investigated was change in peripheral blood cytokine concentrations. The secondary outcomes were gut microbiota composition, intestinal permeability, and safety (assessed with EDSS and MRI). Results: The study was terminated early and was subsequently underpowered to assess whether peripheral blood cytokines were altered following FMTs. FMTs were safe in this group of patients. Two of five patients had elevated small intestinal permeability at baseline that improved to normal values following FMTs. Significant, donor-specific, beneficial alterations to the MS patient gut microbiota were observed following FMT. Conclusion: FMT was safe and tolerable in this cohort of RRMS patients, may improve elevated small intestinal permeability, and has the potential to enrich for an MS-protective microbiota. Further studies with longer follow-up and larger sample sizes are required to determine if FMT is a suitable therapy for MS.

6.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35165181

RESUMO

Staphylococcus aureus is a foremost bacterial pathogen responsible for a vast array of human diseases. Staphylococcal superantigens (SAgs) constitute a family of exotoxins from S. aureus that bind directly to major histocompatibility complex (MHC) class II and T cell receptors to drive extensive T cell activation and cytokine release. Although these toxins have been implicated in serious disease, including toxic shock syndrome, the specific pathological mechanisms remain unclear. Herein, we aimed to elucidate how SAgs contribute to pathogenesis during bloodstream infections and utilized transgenic mice encoding human MHC class II to render mice susceptible to SAg activity. We demonstrate that SAgs contribute to S. aureus bacteremia by massively increasing bacterial burden in the liver, and this was mediated by CD4+ T cells that produced interferon gamma (IFN-γ) to high levels in a SAg-dependent manner. Bacterial burdens were reduced by blocking IFN-γ, phenocopying SAg-deletion mutant strains, and inhibiting a proinflammatory response. Infection kinetics and flow cytometry analyses suggested that this was a macrophage-driven mechanism, which was confirmed through macrophage-depletion experiments. Experiments in human cells demonstrated that excessive IFN-γ allowed S. aureus to replicate efficiently within macrophages. This indicates that SAgs promote bacterial survival by manipulating the immune response to inhibit effective clearing of S. aureus Altogether, this work implicates SAg toxins as critical therapeutic targets for preventing persistent or severe S. aureus disease.


Assuntos
Interferon gama/imunologia , Infecções Estafilocócicas/imunologia , Superantígenos/imunologia , Animais , Bacteriemia , Enterotoxinas/imunologia , Exotoxinas/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Interferon gama/metabolismo , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/imunologia , Staphylococcus aureus/patogenicidade , Linfócitos T/imunologia , Fatores de Virulência/imunologia
7.
J Immunol ; 207(2): 421-435, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34233909

RESUMO

Intracellular ion fluxes emerge as critical actors of immunoregulation but still remain poorly explored. In this study, we investigated the role of the redundant cation channels TMEM176A and TMEM176B (TMEM176A/B) in retinoic acid-related orphan receptor γt+ cells and conventional dendritic cells (DCs) using germline and conditional double knockout mice. Although Tmem176a/b appeared surprisingly dispensable for the protective function of Th17 and group 3 innate lymphoid cells in the intestinal mucosa, we found that they were required in conventional DCs for optimal Ag processing and presentation to CD4+ T cells. Using a real-time imaging method, we show that TMEM176A/B accumulate in dynamic post-Golgi vesicles preferentially linked to the late endolysosomal system and strongly colocalize with HLA-DM. Taken together, our results suggest that TMEM176A/B ion channels play a direct role in the MHC class II compartment of DCs for the fine regulation of Ag presentation and naive CD4+ T cell priming.


Assuntos
Apresentação de Antígeno/imunologia , Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Proteínas de Membrana/imunologia , Animais , Endossomos/imunologia , Feminino , Genes MHC da Classe II/imunologia , Complexo de Golgi/imunologia , Imunidade Inata/imunologia , Mucosa Intestinal/imunologia , Canais Iônicos/imunologia , Linfócitos/imunologia , Lisossomos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Th17/imunologia , Tretinoína/imunologia
8.
Front Immunol ; 11: 841, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32457757

RESUMO

Generation of specific antibodies during an immune response to infection or vaccination depends on the ability to rapidly and accurately select clones of antibody-secreting B lymphocytes for expansion. Antigen-specific B cell clones undergo the cell fate decision to differentiate into antibody-secreting plasma cells, memory B cells, or germinal center B cells. The E26-transformation-specific (ETS) transcription factors Spi-B and Spi-C are important regulators of B cell development and function. Spi-B is expressed throughout B cell development and is downregulated upon plasma cell differentiation. Spi-C is highly related to Spi-B and has similar DNA-binding specificity. Heterozygosity for Spic rescues B cell development and B cell proliferation defects observed in Spi-B knockout mice. In this study, we show that heterozygosity for Spic rescued defective IgG1 secondary antibody responses in Spib-/- mice. Plasma cell differentiation was accelerated in Spib-/- B cells. Gene expression, ChIP-seq, and reporter gene analysis showed that Spi-B and Spi-C differentially regulated Bach2, encoding a key regulator of plasma cell and memory B cell differentiation. These results suggest that Spi-B and Spi-C oppose the function of one another to regulate B cell differentiation and function.


Assuntos
Linfócitos B/imunologia , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica/imunologia , Proteínas Proto-Oncogênicas c-ets/genética , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/imunologia , Proteínas de Ligação a DNA/metabolismo , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-ets/metabolismo , Baço/citologia , Baço/imunologia , Fatores de Transcrição/genética
9.
Immunol Rev ; 288(1): 10-27, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30874342

RESUMO

Throughout the developing GC response, B cell survival and fate choices made at the single cell level are dependent on signals received largely through interactions with other cells, often with cognate T cells. The type of signals that a given B cell can encounter is dictated by its location within tissue microarchitecture. The focus of this review is on the initiation and evolution of the GC response at the earliest time points. Here, we review the key factors influencing the progression of GC B cell differentiation that are both stage and context dependent. Finally, we describe the coevolution of niches within and surrounding the GC that influence the outcome of the GC response.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Células Estromais/fisiologia , Linfócitos T/imunologia , Animais , Diferenciação Celular , Humanos , Ativação Linfocitária , Comunicação Parácrina , Transdução de Sinais
10.
Cell Immunol ; 339: 29-32, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30249342

RESUMO

Pathogenic lymphocytes aberrantly recognize and mount an immune response against self-antigens, leading to the destruction of healthy cells, tissues and organs. Recent studies have shown that both B and T lymphocytes contribute to the development, prevention and modulation of various autoimmune diseases. Regulatory T and B cell subsets appear to play a prominent role in the prevention of autoimmune diseases. The recent identification of novel regulatory Th17 cells, termed as Treg17 cells, has expanded the scope of regulatory T lymphocytes (Treg cells) in the prevention of autoimmune diseases. Similarly, novel regulatory B cell subsets, termed as Breg cells, acting on their own or by inducing Treg cells have extended the role of B lymphocytes in the prevention and regulation of autoimmune diseases. We suggest that Treg17 cells and Breg cells have an important immunoregulatory role in autoimmune diseases.


Assuntos
Doenças Autoimunes/imunologia , Linfócitos B Reguladores/imunologia , Linfócitos B/imunologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Animais , Humanos
11.
Cell Rep ; 25(12): 3342-3355.e5, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30566861

RESUMO

B cell fate decisions within a germinal center (GC) are critical to determining the outcome of the immune response to a given antigen. Here, we characterize GC kinetics and B cell fate choices in a response to the autoantigen myelin oligodendrocyte glycoprotein (MOG) and compare the response with a standard model foreign antigen. Both antigens generate productive primary responses, as evidenced by GC development, circulating antigen-specific antibodies, and differentiation of memory B cells. However, in the MOG response, the status of the cognate T cell partner drives preferential B cell differentiation to a memory phenotype at the expense of GC maintenance, resulting in a truncated GC. Reduced plasma cell differentiation is largely independent of T cell influence. Interestingly, memory-phenotype B cells formed in the MOG GC are not long lived, resulting in a failure of the B cell response to secondary challenge.


Assuntos
Linfócitos B/citologia , Diferenciação Celular , Centro Germinativo/imunologia , Memória Imunológica , Animais , Antígenos CD/metabolismo , Autoantígenos/metabolismo , Haptenos/metabolismo , Imunização , Ativação Linfocitária/imunologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Glicoproteína Mielina-Oligodendrócito/metabolismo , Ovalbumina/metabolismo , Fenótipo , Linfócitos T/citologia , Linfócitos T/metabolismo
12.
J Immunol ; 201(12): 3569-3579, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30446568

RESUMO

We examined the unique contributions of the cytokines IL-21 and IL-4 on germinal center (GC) B cell initiation and subsequent maturation in a murine model system. Similar to other reports, we found T follicular helper cell expression of IL-21 begins prior to T follicular helper cell migration into the B cell follicle and precedes that of IL-4. Consistent with this timing, IL-21 signaling has a greater influence on the perifollicular pre-GC B cell transition to the intrafollicular stage. Notably, Bcl6hi B cells can form in the combined absence of IL-21R- and STAT6-derived signals; however, these nascent GC B cells cease to proliferate and are more prone to apoptosis. When B cells lack either IL-21R or STAT6, aberrant GCs form atypical centroblasts and centrocytes that differ in their phenotypic maturation and costimulatory molecule expression. Thus, IL-4 and IL-21 play nonredundant roles in the phased progression of GC B cell development that can initiate in the combined absence of these cytokine signals.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Interleucina-4/metabolismo , Interleucinas/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Apoptose , Diferenciação Celular , Autorrenovação Celular , Células Cultivadas , Ativação Linfocitária , Camundongos , Camundongos Knockout , Comunicação Parácrina , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Receptores de Interleucina-21/genética , Fator de Transcrição STAT6/metabolismo , Transdução de Sinais
13.
JCI Insight ; 2(23)2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29212956

RESUMO

Neutrophils contribute to demyelinating autoimmune diseases, yet their phenotype and functions have been elusive to date. Here, we demonstrate that ICAM1 surface expression distinguishes extra- from intravascular neutrophils in the mouse CNS during experimental autoimmune encephalomyelitis (EAE). Transcriptomic analysis of these 2 subpopulations indicated that neutrophils, once extravasated, acquire macrophage-like properties, including the potential for immunostimulation and MHC class II-mediated antigen presentation. In corroboration, super-resolution (3D stimulated emission-depletion [STED]) microscopy revealed neutrophils forming synapses with T and B cells in situ. Further, neutrophils specifically express the aspartic retroviral-like protease ASPRV1, which increases in the CNS during EAE and severe cases of multiple sclerosis. Without ASPRV1, mice immunized with a new B cell-dependent myelin antigen (but not with the traditional myelin oligodendrocyte glycoprotein peptide) develop a chronic phase of EAE that is less severe and even completely fades in many individuals. Therefore, ICAM1+ macrophage-like neutrophils can play both shared and nonredundant roles in autoimmune demyelination, among them perpetuating inflammation via ASPRV1.


Assuntos
Ácido Aspártico Endopeptidases/imunologia , Linfócitos B/imunologia , Encefalomielite Autoimune Experimental/imunologia , Molécula 1 de Adesão Intercelular/metabolismo , Neutrófilos/imunologia , Animais , Apresentação de Antígeno/imunologia , Doença Crônica , Sinapses Imunológicas/imunologia , Imunofenotipagem , Camundongos Endogâmicos C57BL , Medula Espinal/imunologia , Linfócitos T/imunologia , Transcriptoma/imunologia
14.
J Immunol ; 199(2): 449-457, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28584006

RESUMO

Once activated, T cells gain the ability to access both healthy and inflamed nonlymphoid tissues. They are then reactivated to remain in the tissue and exert their effector function only if they encounter their specific Ag. In this study, we set out to determine if the same is true for B cells using a mouse model of CNS autoimmunity that incorporates both T and B cell recognition of a myelin autoantigen. Both T and B cells were common infiltrates of spinal cords in diseased mice. However, unlike T cells, anti-myelin B cells were excluded from the inflamed tissue. Further, CNS B cells did not have a phenotype consistent with Ag-specific activation as it occurs in lymphatic tissue. Instead, they expressed elevated levels of CD80, indicating that B cells may contribute to local inflammation through nonantigen-specific mechanisms.


Assuntos
Autoantígenos/imunologia , Linfócitos B/imunologia , Sistema Nervoso Central/imunologia , Encefalomielite Autoimune Experimental/imunologia , Ativação Linfocitária , Bainha de Mielina/imunologia , Animais , Autoimunidade , Linfócitos B/fisiologia , Antígeno B7-1/genética , Antígeno B7-1/imunologia , Movimento Celular/imunologia , Modelos Animais de Doenças , Inflamação/imunologia , Tecido Linfoide/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Medula Espinal/imunologia , Medula Espinal/patologia , Linfócitos T/imunologia , Linfócitos T/fisiologia
15.
Elife ; 62017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28498098

RESUMO

To reconcile conflicting reports on the role of CD40 signaling in germinal center (GC) formation, we examined the earliest stages of murine GC B cell differentiation. Peri-follicular GC precursors first expressed intermediate levels of BCL6 while co-expressing the transcription factors RelB and IRF4, the latter known to repress Bcl6 transcription. Transition of GC precursors to the BCL6hi follicular state was associated with cell division, although the number of required cell divisions was immunogen dose dependent. Potentiating T cell help or CD40 signaling in these GC precursors actively repressed GC B cell maturation and diverted their fate towards plasmablast differentiation, whereas depletion of CD4+ T cells promoted this initial transition. Thus while CD40 signaling in B cells is necessary to generate the immediate precursors of GC B cells, transition to the BCL6hi follicular state is promoted by a regional and transient diminution of T cell help.


Assuntos
Linfócitos B/fisiologia , Diferenciação Celular , Centro Germinativo/citologia , Linfócitos T/fisiologia , Animais , Linfócitos B/imunologia , Antígenos CD40/metabolismo , Camundongos , Linfócitos T/imunologia
17.
J Vis Exp ; (116)2016 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-27842340

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS), thought to occur as a result of autoimmune responses targeting myelin. Experimental autoimmune encephalomyelitis (EAE) is the most common animal model of CNS autoimmune disease, and is typically induced via immunization with short peptides representing immunodominant CD4+ T cell epitopes of myelin proteins. However, B cells recognize unprocessed protein directly, and immunization with short peptide does not activate B cells that recognize the native protein. As recent clinical trials of B cell-depleting therapies in MS have suggested a role for B cells in driving disease in humans, there is an urgent need for animal models that incorporate B cell-recognition of autoantigen. To this end, we have generated a new fusion protein containing the extracellular domain of the mouse version of myelin oligodendrocyte glycoprotein (MOG) as well as N-terminal fusions of a His-tag for purification purposes and the thioredoxin protein to improve solubility (MOGtag). A tobacco etch virus (TEV) protease cleavage site was incorporated to allow the removal of all tag sequences, leaving only the pure MOG1-125 extracellular domain. Here, we describe a simple protocol using only standard laboratory equipment to produce large quantities of pure MOGtag or MOG1-125. This protocol consistently generates over 200 mg of MOGtag protein. Immunization with either MOGtag or MOG1-125 generates an autoimmune response that includes pathogenic B cells that recognize the native mouse MOG.


Assuntos
Encefalomielite Autoimune Experimental , Glicoproteína Mielina-Oligodendrócito , Animais , Humanos , Camundongos , Esclerose Múltipla , Glicoproteína Associada a Mielina , Linfócitos T
18.
Immunology ; 147(1): 97-113, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26456931

RESUMO

We describe a protective early acquired immune response to pneumococcal pneumonia that is mediated by a subset of B1a cells. Mice deficient in B1 cells (xid), or activation-induced cytidine deaminase (AID(-/-) ), or invariant natural killer T (iNKT) cells (Jα18(-/-) ), or interleukin-13 (IL-13(-/-) ) had impaired early clearance of pneumococci in the lung, compared with wild-type mice. In contrast, AID(-/-) mice adoptively transferred with AID(+/+) B1a cells, significantly cleared bacteria from the lungs as early as 3 days post infection. We show that this early bacterial clearance corresponds to an allergic contact sensitivity-like cutaneous response, probably due to a subpopulation of initiating B1a cells. In the pneumonia model, these B1a cells were found to secrete higher affinity antigen-specific IgM. In addition, as in contact sensitivity, iNKT cells were required for the anti-pneumococcal B1a cell initiating response, probably through early production of IL-13, given that IL-13(-/-) mice also failed to clear infection. Our study is the first to demonstrate the importance of AID in generating an appropriate B1a cell response to pathogenic bacteria. Given the antibody affinity and pneumonia resistance data, natural IgM produced by conventional B1a cells are not responsible for pneumonia clearance compared with the AID-dependent subset.


Assuntos
Imunidade Adaptativa , Linfócitos B/enzimologia , Citidina Desaminase/metabolismo , Pulmão/enzimologia , Fagocitose , Pneumonia Pneumocócica/enzimologia , Streptococcus pneumoniae/imunologia , Transferência Adotiva , Tirosina Quinase da Agamaglobulinemia , Animais , Antígenos de Bactérias/imunologia , Linfócitos B/imunologia , Linfócitos B/microbiologia , Linfócitos B/transplante , Ativação do Complemento , Citidina Desaminase/deficiência , Citidina Desaminase/genética , Citidina Desaminase/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Dermatite de Contato/enzimologia , Dermatite de Contato/imunologia , Dermatite de Contato/microbiologia , Modelos Animais de Doenças , Genótipo , Imunoglobulina M/imunologia , Imunoglobulina M/metabolismo , Interleucina-13/deficiência , Interleucina-13/genética , Pulmão/imunologia , Pulmão/microbiologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/microbiologia , Fenótipo , Pneumonia Pneumocócica/imunologia , Pneumonia Pneumocócica/microbiologia , Proteínas Tirosina Quinases/imunologia , Proteínas Tirosina Quinases/metabolismo , Baço/enzimologia , Baço/imunologia , Baço/microbiologia , Streptococcus pneumoniae/patogenicidade , Fatores de Tempo
19.
Ann N Y Acad Sci ; 1362: 200-14, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26662721

RESUMO

We propose that there is a special B-1a B cell subset ("sB-1a" cells) that mediates linked processes very early after immunization to initiate cutaneous contact sensitivity (CS), delayed-type hypersensitivity (DTH), and immune resistance to pneumococcal pneumonia. Our published data indicate that in CS and DTH, these initiating processes are required for elicitation of the delayed onset and late-occurring classical T cell-mediated responses. sB-1a cells resemble memory B2 cells, as they are stimulated within 1 h of immunization and depend on T helper cytokines-uniquely IL-4 from hepatic iNKT cells--for activation and rapid migration from the peritoneal cavity to the spleen to secrete IgM antibody (Ab) and Ab-derived free light chains (FLCs) by only 1 day after immunization. Unlike conventional B-1a (cB-1a) cell-produced IgM natural Ab, IgM Ab produced by sB-1a cells has high Ag affinity owing to immunoglobulin V-region mutations induced by activation-induced cytidine deaminase (AID). The dominant cB-1a cells are increased in immunized AID-deficient mice but do not mediate initiation, CS, or pneumonia resistance because natural Ab has relatively low Ag affinity because of unmutated germ-line V regions. In CS and DTH, sB-1a IgM Ag affinity is sufficiently high to mediate complement activation for generation of C5a that, together with vasoactive mediators such as TNF-α released by FLC-sensitized mast cells, activate local endothelium for extravascular recruitment of effector T cells. We conclude by discussing the possibility of functional sB-1 cells in humans.


Assuntos
Subpopulações de Linfócitos B/imunologia , Citidina Desaminase/imunologia , Dermatite de Contato/imunologia , Pneumonia Pneumocócica/imunologia , Animais , Subpopulações de Linfócitos B/metabolismo , Citidina Desaminase/deficiência , Dermatite de Contato/metabolismo , Humanos , Hipersensibilidade , Imunização , Mastócitos/imunologia , Mastócitos/metabolismo , Camundongos , Pneumonia Pneumocócica/prevenção & controle
20.
Front Immunol ; 6: 470, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441975

RESUMO

We characterized B cell infiltration of the spinal cord in a B cell-dependent spontaneous model of central nervous system (CNS) autoimmunity that develops in a proportion of mice with mutant T and B cell receptors specific for myelin oligodendrocyte glycoprotein. We found that, while males are more likely to develop disease, females are more likely to have a chronic rather than monophasic disease course. B cell infiltration of the spinal cord was investigated by histology and FACs. CD4(+) T cell infiltration was pervasive throughout the white and in some cases gray matter. B cells were almost exclusively restricted to the meninges, often in clusters reminiscent of those described in human multiple sclerosis. These clusters were typically found adjacent to white matter lesions and their presence was associated with a chronic disease course. Extensive investigation of these clusters by histology did not identify features of lymphoid follicles, including organization of T and B cells into separate zones, CD35(+) follicular dendritic cells, or germinal centers. The majority of cluster B cells were IgD(+) with little evidence of class switch. Consistent with this, B cells isolated from the spinal cord were of the naïve/memory CD38(hi) CD95(lo) phenotype. Nevertheless, they were CD62L(lo) and CD80(hi) compared to lymph node B cells suggesting that they were at least partly activated and primed to present antigen. Therefore, if meningeal B cells contribute to CNS pathology in autoimmunity, follicular differentiation is not necessary for the pathogenic mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA