Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nucleic Acids Res ; 52(10): 5732-5755, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597682

RESUMO

Expansion of a G4C2 repeat in the C9orf72 gene is associated with familial Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD). To investigate the underlying mechanisms of repeat instability, which occurs both somatically and intergenerationally, we created a novel mouse model of familial ALS/FTD that harbors 96 copies of G4C2 repeats at a humanized C9orf72 locus. In mouse embryonic stem cells, we observed two modes of repeat expansion. First, we noted minor increases in repeat length per expansion event, which was dependent on a mismatch repair pathway protein Msh2. Second, we found major increases in repeat length per event when a DNA double- or single-strand break (DSB/SSB) was artificially introduced proximal to the repeats, and which was dependent on the homology-directed repair (HDR) pathway. In mice, the first mode primarily drove somatic repeat expansion. Major changes in repeat length, including expansion, were observed when SSB was introduced in one-cell embryos, or intergenerationally without DSB/SSB introduction if G4C2 repeats exceeded 400 copies, although spontaneous HDR-mediated expansion has yet to be identified. These findings provide a novel strategy to model repeat expansion in a non-human genome and offer insights into the mechanism behind C9orf72 G4C2 repeat instability.


Assuntos
Proteína C9orf72 , Expansão das Repetições de DNA , Instabilidade Genômica , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Modelos Animais de Doenças , Quebras de DNA de Cadeia Dupla , Expansão das Repetições de DNA/genética , Demência Frontotemporal/genética , Técnicas de Introdução de Genes , Instabilidade Genômica/genética , Proteína 2 Homóloga a MutS/genética
2.
Stem Cell Reports ; 17(3): 678-692, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35120624

RESUMO

Amyotrophic lateral sclerosis is a fatal disease pathologically typified by motor and cortical neurodegeneration as well as microgliosis. The FUS P525L mutation is highly penetrant and causes ALS cases with earlier disease onset and more aggressive progression. To date, how P525L mutations may affect microglia during ALS pathogenesis had not been explored. In this study, we engineered isogenic control and P525L mutant FUS in independent human iPSC lines and differentiated them into microglia-like cells. We report that the P525L mutation causes FUS protein to mislocalize from the nucleus to cytoplasm. Homozygous P525L mutations perturb the transcriptome profile in which many differentially expressed genes are associated with microglial functions. Specifically, the dysregulation of several chemoreceptor genes leads to altered chemoreceptor-activated calcium signaling. However, other microglial functions such as phagocytosis and cytokine release are not significantly affected. Our study underscores the cell-autonomous effects of the ALS-linked FUS P525L mutation in a human microglia model.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Proteína FUS de Ligação a RNA , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Microglia/metabolismo , Mutação , Proteína FUS de Ligação a RNA/genética , Transcriptoma
3.
Genetics ; 215(3): 665-681, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32444379

RESUMO

We explore here the cis-regulatory logic that dictates gene expression in specific cell types in the nervous system. We focus on a set of eight genes involved in the synthesis, transport, and breakdown of three neurotransmitter systems: acetylcholine (unc-17/VAChT, cha-1/ChAT, cho-1/ChT, and ace-2/AChE), glutamate (eat-4/VGluT), and γ-aminobutyric acid (unc-25/GAD, unc-46/LAMP, and unc-47/VGAT). These genes are specifically expressed in defined subsets of cells in the nervous system. Through transgenic reporter gene assays, we find that the cellular specificity of expression of all of these genes is controlled in a modular manner through distinct cis-regulatory elements, corroborating the previously inferred piecemeal nature of specification of neurotransmitter identity. This modularity provides the mechanistic basis for the phenomenon of "phenotypic convergence," in which distinct regulatory pathways can generate similar phenotypic outcomes (i.e., the acquisition of a specific neurotransmitter identity) in different neuron classes. We also identify cases of enhancer pleiotropy, in which the same cis-regulatory element is utilized to control gene expression in distinct neuron types. We engineered a cis-regulatory allele of the vesicular acetylcholine transporter, unc-17/VAChT, to assess the functional contribution of a "shadowed" enhancer. We observed a selective loss of unc-17/VAChT expression in one cholinergic pharyngeal pacemaker motor neuron class and a behavioral phenotype that matches microsurgical removal of this neuron. Our analysis illustrates the value of understanding cis-regulatory information to manipulate gene expression and control animal behavior.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Neurônios/metabolismo , Neurotransmissores/metabolismo , Sequências Reguladoras de Ácido Nucleico , Proteínas Vesiculares de Transporte de Acetilcolina/genética , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Pleiotropia Genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Neurônios/classificação , Neurotransmissores/genética , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/genética , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
4.
Elife ; 62017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28677525

RESUMO

A core principle of nervous system organization is the diversification of neuron classes into subclasses that share large sets of features but differ in select traits. We describe here a molecular mechanism necessary for motor neurons to acquire subclass-specific traits in the nematode Caenorhabditis elegans. Cholinergic motor neuron classes of the ventral nerve cord can be subdivided into subclasses along the anterior-posterior (A-P) axis based on synaptic connectivity patterns and molecular features. The conserved COE-type terminal selector UNC-3 not only controls the expression of traits shared by all members of a neuron class, but is also required for subclass-specific traits expressed along the A-P axis. UNC-3, which is not regionally restricted, requires region-specific cofactors in the form of Hox proteins to co-activate subclass-specific effector genes in post-mitotic motor neurons. This intersectional gene regulatory principle for neuronal subclass diversification may be conserved from nematodes to mice.


Assuntos
Caenorhabditis elegans/embriologia , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Neurônios Motores/fisiologia , Animais , Variação Biológica da População , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Homeodomínio/metabolismo , Camundongos , Fatores de Transcrição/metabolismo
5.
Neuron ; 93(1): 80-98, 2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-28056346

RESUMO

A common organizational feature of nervous systems is the existence of groups of neurons that share common traits but can be divided into individual subtypes based on anatomical or molecular features. We elucidate the mechanistic basis of neuronal diversification processes in the context of C.elegans ventral cord motor neurons that share common traits that are directly activated by the terminal selector UNC-3. Diversification of motor neurons into different classes, each characterized by unique patterns of effector gene expression, is controlled by distinct combinations of phylogenetically conserved, class-specific transcriptional repressors. These repressors are continuously required in postmitotic neurons to prevent UNC-3, which is active in all neuron classes, from activating class-specific effector genes in specific motor neuron subsets via discrete cis-regulatory elements. The strategy of antagonizing the activity of broadly acting terminal selectors of neuron identity in a subtype-specific fashion may constitute a general principle of neuron subtype diversification.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Regulação da Expressão Gênica no Desenvolvimento , Neurônios Motores/metabolismo , Neurogênese/genética , Fatores de Transcrição/genética , Animais , Caenorhabditis elegans , Diferenciação Celular/genética , Canais Epiteliais de Sódio/genética , Neurônios Motores/citologia , Receptores de AMPA/genética , Receptores Nicotínicos/genética , Fator de Crescimento Transformador beta/genética
6.
Curr Biol ; 25(10): 1282-95, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-25913400

RESUMO

During nervous system development, postmitotic neurons face the challenge of generating and structurally organizing specific synapses with appropriate synaptic partners. An important unexplored question is whether the process of synaptogenesis is coordinated with the adoption of specific signaling properties of a neuron. Such signaling properties are defined by the neurotransmitter system that a neuron uses to communicate with postsynaptic partners, the neurotransmitter receptor type used to receive input from presynaptic neurons, and, potentially, other sensory receptors that activate a neuron. Elucidating the mechanisms that coordinate synaptogenesis, neuronal activation, and neurotransmitter signaling in a postmitotic neuron represents one key approach to understanding how neurons develop as functional units. Using the SAB class of Caenorhabditis elegans motor neurons as a model system, we show here that the phylogenetically conserved COE-type transcription factor UNC-3 is required for synaptogenesis. UNC-3 directly controls the expression of the ADAMTS-like protein MADD-4/Punctin, a presynaptically secreted synapse-organizing molecule that clusters postsynaptic receptors. UNC-3 also controls the assembly of presynaptic specializations and ensures the coordinated expression of enzymes and transporters that define the cholinergic neurotransmitter identity of the SAB neurons. Furthermore, synaptic output properties of the SAB neurons are coordinated with neuronal activation and synaptic input, as evidenced by UNC-3 also regulating the expression of ionotropic neurotransmitter receptors and putative stretch receptors. Our study shows how synaptogenesis and distinct, function-defining signaling features of a postmitotic neuron are hardwired together through coordinated transcriptional control.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Neurotransmissores/metabolismo , Sinapses/fisiologia , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Regulação da Expressão Gênica no Desenvolvimento , Neurônios Motores/fisiologia , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurogênese , Transdução de Sinais , Transmissão Sináptica , Fatores de Transcrição/genética
7.
Cell ; 158(2): 277-287, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25018105

RESUMO

Evidence from animal studies and human famines suggests that starvation may affect the health of the progeny of famished individuals. However, it is not clear whether starvation affects only immediate offspring or has lasting effects; it is also unclear how such epigenetic information is inherited. Small RNA-induced gene silencing can persist over several generations via transgenerationally inherited small RNA molecules in C. elegans, but all known transgenerational silencing responses are directed against foreign DNA introduced into the organism. We found that starvation-induced developmental arrest, a natural and drastic environmental change, leads to the generation of small RNAs that are inherited through at least three consecutive generations. These small, endogenous, transgenerationally transmitted RNAs target genes with roles in nutrition. We defined genes that are essential for this multigenerational effect. Moreover, we show that the F3 offspring of starved animals show an increased lifespan, corroborating the notion of a transgenerational memory of past conditions.


Assuntos
Caenorhabditis elegans/fisiologia , Epigênese Genética , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Animais , Caenorhabditis elegans/genética , Humanos , Longevidade , Modelos Animais , Interferência de RNA , RNA de Helmintos/genética , RNA de Helmintos/metabolismo , Inanição
8.
Mol Biol Evol ; 28(3): 1205-15, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21081479

RESUMO

Vertebrate genomes contain thousands of conserved noncoding elements (CNEs) that often function as tissue-specific enhancers. In this study, we have identified CNEs in human, dog, chicken, Xenopus, and four teleost fishes (zebrafish, stickleback, medaka, and fugu) using elephant shark, a cartilaginous vertebrate, as the base genome and investigated the evolution of these ancient vertebrate CNEs (aCNEs) in bony vertebrate lineages. Our analysis shows that aCNEs have been evolving at different rates in different bony vertebrate lineages. Although 78-83% of CNEs have diverged beyond recognition ("lost") in different teleost fishes, only 24% and 40% have been lost in the chicken and mammalian lineages, respectively. Relative rate tests of substitution rates in CNEs revealed that the teleost fish CNEs have been evolving at a significantly higher rate than those in other bony vertebrates. In the ray-finned fish lineage, 68% of aCNEs were lost before the divergence of the four teleosts. This implicates the "fish-specific" whole-genome duplication in the accelerated evolution and the loss of a large number of both copies of duplicated CNEs in teleost fishes. The aCNEs are rich in tissue-specific enhancers and thus many of them are likely to be evolutionarily constrained cis-regulatory elements. The rapid evolution of aCNEs might have affected the expression patterns driven by them. Transgenic zebrafish assay of some human CNE enhancers that have been lost in teleosts has indicated instances of conservation or changes in trans-acting factors between mammals and fishes.


Assuntos
DNA Intergênico , Peixes/genética , Animais , Evolução Biológica , Osso e Ossos/fisiologia , Cartilagem/fisiologia , Galinhas/genética , Sequência Conservada/genética , DNA Intergênico/análise , DNA Intergênico/biossíntese , Cães , Elementos Facilitadores Genéticos , Genoma , Humanos , Filogenia , Especificidade da Espécie , Transativadores/genética , Xenopus/genética
9.
Mol Cell ; 33(1): 15-29, 2009 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-19150424

RESUMO

Although mRNAs of multiple isoforms of Bax, which encodes a central regulator of apoptosis signaling, have been reported, only Baxalpha protein has been well documented and studied. Baxalpha exists in latent form and is activated upon apoptosis induction through conformational changes. Here we demonstrate that Baxbeta protein is ubiquitously present among human cells, but its activity is restricted through stringent regulation by proteasomal degradation. In contrast to Baxalpha, native Baxbeta spontaneously integrates into mitochondrial membrane and is highly potent in inducing cytochrome c release from mitochondria. Remarkably, Baxbeta protein is upregulated by apoptotic stimuli via inhibition of its ubiquitination process, and stable expression of Baxbeta in HCT116-Bax(-/-) cells restores their sensitivity to multiple stimuli. Baxbeta associates with and promotes Baxalpha activation. Moreover, selective knockdown of Baxbeta desensitizes HCT116-Bax(+/-) cells to Bax-dependent apoptosis signaling. These observations underscore the plasticity of human Bax in serving its role as a "gatekeeper" for apoptosis.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional , Proteína X Associada a bcl-2/metabolismo , Apoptose/efeitos dos fármacos , Citocromos c/metabolismo , Células HCT116 , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Peso Molecular , Inibidores de Proteases/farmacologia , Inibidores de Proteassoma , Isoformas de Proteínas/química , Isoformas de Proteínas/deficiência , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Proteína X Associada a bcl-2/química , Proteína X Associada a bcl-2/deficiência
10.
J Neurochem ; 108(3): 601-10, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19046408

RESUMO

In this study, we demonstrated that transient transfection and over-expression of human mutant A53T alpha-synuclein (alpha-syn) could induce expression level- and time-dependent, non-apoptotic cell death in PC12 cells, while wild-type and mutant A30P alpha-syn could not. The non-apoptotic cell death induced by over-expression of A53T alpha-syn in PC12 cells was found to be dopamine (DA) related. It could be alleviated by nerve growth factor but not by chemicals that abrogate endoplasmic reticulum stress. Furthermore, PC12 cell death could be alleviated by N-acetyl-cysteine (NAC) as well as by L-cysteine; but not by cell permeable tyrosinase inhibitors. NAC could prevent DA auto-oxidation and tyrosinase-catalyzed DA oxidation, whereas L-cysteine could potently abrogate DA auto-oxidation but could not prevent tyrosinase-catalyzed DA oxidation. Both NAC and L-cysteine could increase the reduced and total GSH levels, and concurrently decrease the oxidized GSH level in PC12 cells. On the other hand, over-expression of human mutant A53T alpha-syn could decrease the reduced and total GSH levels, and increase the oxidized GSH level in the cells. Taken together, we concluded that auto-oxidation of endogenous DA aggravates non-apoptotic cell death induced by over-expression of human mutant A53T alpha-syn in PC12 cells.


Assuntos
Morte Celular/fisiologia , Dopamina/metabolismo , alfa-Sinucleína/biossíntese , alfa-Sinucleína/genética , Acetilcisteína/farmacologia , Animais , Benzimidazóis , Cromatografia Líquida de Alta Pressão , Cisteína/farmacologia , Inibidores Enzimáticos/farmacologia , Citometria de Fluxo , Corantes Fluorescentes , Sequestradores de Radicais Livres/farmacologia , Glutationa/metabolismo , Humanos , Monofenol Mono-Oxigenase/antagonistas & inibidores , Mutação , Fator de Crescimento Neural/farmacologia , Oxirredução , Células PC12 , Ratos , Sais de Tetrazólio , Tiazóis , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA