Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4281, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460464

RESUMO

The bacterial genus Kingella includes two pathogenic species, namely Kingella kingae and Kingella negevensis, as well as strictly commensal species. Both K. kingae and K. negevensis secrete a toxin called RtxA that is absent in the commensal species. Here we present a phylogenomic study of the genus Kingella, including new genomic sequences for 88 clinical isolates, genotyping of another 131 global isolates, and analysis of 52 available genomes. The phylogenetic evidence supports that the toxin-encoding operon rtxCA was acquired by a common ancestor of the pathogenic Kingella species, and that a preexisting type-I secretion system was co-opted for toxin export. Subsequent genomic reorganization distributed the toxin machinery across two loci, with 30-35% of K. kingae strains containing two copies of the rtxA toxin gene. The rtxA duplication is largely clonal and is associated with invasive disease. Assays with isogenic strains show that a single copy of rtxA is associated with reduced cytotoxicity in vitro. Thus, our study identifies key steps in the evolutionary transition from commensal to pathogen, including horizontal gene transfer, co-option of an existing secretion system, and gene duplication.


Assuntos
Toxinas Bacterianas , Kingella kingae , Filogenia , Virulência/genética , Toxinas Bacterianas/genética , Kingella/genética , Kingella kingae/genética
2.
J Bacteriol ; 199(23)2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28874408

RESUMO

Kingella kingae is an important pathogen in young children and initiates infection by colonizing the posterior pharynx. Adherence to pharyngeal epithelial cells is an important first step in the process of colonization. In the present study, we sought to elucidate the interplay of type IV pili (T4P), a trimeric autotransporter adhesin called Knh, and the polysaccharide capsule in K. kingae adherence to host cells. Using adherence assays performed under shear stress, we observed that a strain expressing only Knh was capable of higher levels of adherence than a strain expressing only T4P. Using atomic force microscopy and transmission electron microscopy (TEM), we established that the capsule had a mean depth of 700 nm and that Knh was approximately 110 nm long. Using cationic ferritin capsule staining and thin-section transmission electron microscopy, we found that when bacteria expressing retractile T4P were in close contact with host cells, the capsule was absent at the point of contact between the bacterium and the host cell membrane. In a T4P retraction-deficient mutant, the capsule depth remained intact and adherence levels were markedly reduced. These results support the following model: T4P make initial contact with the host cell and mediate low-strength adherence. T4P retract, pulling the organism closer to the host cell and displacing the capsule, allowing Knh to be exposed and mediate high-strength, tight adherence to the host cell surface. This report provides the first description of the mechanical displacement of capsule enabling intimate bacterial adherence to host cells.IMPORTANCE Adherence to host cells is an important first step in bacterial colonization and pathogenicity. Kingella kingae has three surface factors that are involved in adherence: type IV pili (T4P), a trimeric autotransporter adhesin called Knh, and a polysaccharide capsule. Our results suggest that T4P mediate initial contact and low-strength adherence to host cells. T4P retraction draws the bacterium closer to the host cell and causes the displacement of capsule. This displacement exposes Knh and allows Knh to mediate high-strength adherence to the host cell. This work provides new insight into the interplay of T4P, a nonpilus adhesin, and a capsule and their effects on bacterial adherence to host cells.


Assuntos
Aderência Bacteriana/fisiologia , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Kingella kingae/metabolismo , Células A549 , Adesinas Bacterianas/metabolismo , Linhagem Celular Tumoral , Células Epiteliais/microbiologia , Humanos , Microscopia Eletrônica de Transmissão/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA