Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Anat Rec (Hoboken) ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223842

RESUMO

Bioimaging is changing the field of sensory biology, especially for taxa that are lesser-known, rare, and logistically difficult to source. When integrated with traditional neurobiological approaches, developing an archival, digital repository of morphological images can offer the opportunity to improve our understanding of whole neural systems without the issues of surgical intervention and negate the risk of damage and artefactual interpretation. This review focuses on current approaches to bioimaging the peripheral (sense organs) and central (brain) nervous systems in extant fishes (cartilaginous and bony) and non-avian reptiles in situ. Magnetic resonance imaging (MRI), micro-computed tomography (µCT), both super-resolution track density imaging and diffusion tensor-based imaging, and a range of other new technological advances are presented, together with novel approaches in optimizing both contrast and resolution, for developing detailed neuroanatomical atlases and enhancing comparative analyses of museum specimens. For MRI, tissue preparation, including choice of fixative, impacts tissue MR responses, where both resolving power and signal-to-noise ratio improve as field strength increases. Time in fixative, concentration of contrast agent, and duration of immersion in the contrast agent can also significantly affect relaxation times, and thus image quality. For µCT, the use of contrast-enhancing stains (iodine-, non-iodine-, or nanoparticle-based) is critical, where the type of fixative used, and the concentration of stain and duration of staining time often require species-specific optimization. Advanced reconstruction algorithms to reduce noise and artifacts and post-processing techniques, such as deconvolution and filtering, are now being used to improve image quality and resolution.

2.
bioRxiv ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39071353

RESUMO

Radiopharmaceutical therapies (RPT) activate a type I interferon (IFN1) response in tumor cells. We hypothesized that the timing and amplitude of this response varies by isotope. We compared equal doses delivered by 90 Y, 177 Lu, and 225 Ac in vitro as unbound radionuclides and in vivo when chelated to NM600, a tumor-selective alkylphosphocholine. Response in murine MOC2 head and neck carcinoma and B78 melanoma was evaluated by qPCR and flow cytometry. Therapeutic response to 225 Ac-NM600+anti-CTLA4+anti-PD-L1 immune checkpoint inhibition (ICI) was evaluated in wild-type and stimulator of interferon genes knockout (STING KO) B78. The timing and magnitude of IFN1 response correlated with radionuclide half-life and linear energy transfer. CD8 + /Treg ratios increased in tumors 7 days after 90 Y- and 177 Lu-NM600 and day 21 after 225 Ac-NM600. 225 Ac-NM600+ICI improved survival in mice with WT but not with STING KO tumors, relative to monotherapies. Immunomodulatory effects of RPT vary with radioisotope and promote STING-dependent enhanced response to ICIs in murine models. Teaser: This study describes the time course and nature of tumor immunomodulation by radiopharmaceuticals with differing physical properties.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38957102

RESUMO

Sleep is a prominent physiological state observed across the animal kingdom. Yet, for some animals, our ability to identify sleep can be masked by behaviors otherwise associated with being awake, such as for some sharks that must swim continuously to push oxygenated seawater over their gills to breathe. We know that sleep in buccal pumping sharks with clear rest/activity cycles, such as draughtsboard sharks (Cephaloscyllium isabellum, Bonnaterre, 1788), manifests as a behavioral shutdown, postural relaxation, reduced responsiveness, and a lowered metabolic rate. However, these features of sleep do not lend themselves well to animals that swim nonstop. In addition to video and accelerometry recordings, we tried to explore the electrophysiological correlates of sleep in draughtsboard sharks using electroencephalography (EEG), electromyography, and electrooculography, while monitoring brain temperature. The seven channels of EEG activity had a surprising level of (apparent) instability when animals were swimming, but also when sleeping. The amount of stable EEG signals was too low for replication within- and across individuals. Eye movements were not measurable, owing to instability of the reference electrode. Based on an established behavioral characterization of sleep in draughtsboard sharks, we offer the original finding that muscle tone was strongest during active wakefulness, lower in quietly awake sharks, and lowest in sleeping sharks. We also offer several critical suggestions on how to improve techniques for characterizing sleep electrophysiology in future studies on elasmobranchs, particularly for those that swim continuously. Ultimately, these approaches will provide important insights into the evolutionary confluence of behaviors typically associated with wakefulness and sleep.

4.
ACS Nano ; 17(11): 10236-10251, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37216491

RESUMO

The in situ vaccine effect of radiation therapy (RT) has been shown to be limited in both preclinical and clinical settings, possibly due to the inadequacy of RT alone to stimulate in situ vaccination in immunologically "cold" tumor microenvironments (TMEs) and the mixed effects of RT in promoting tumor infiltration of both effector and suppressor immune cells. To address these limitations, we combined intratumoral injection of the radiated site with IL2 and a multifunctional nanoparticle (PIC). The local injection of these agents produced a cooperative effect that favorably immunomodulated the irradiated TME, enhancing the activation of tumor-infiltrating T cells and improving systemic anti-tumor T cell immunity. In syngeneic murine tumor models, the PIC+IL2+RT combination significantly improved the tumor response, surpassing the single or dual combinations of these treatments. Furthermore, this treatment led to the activation of tumor-specific immune memory and improved abscopal effects. Our findings suggest that this strategy can be used to augment the in situ vaccine effect of RT in clinical settings.


Assuntos
Nanopartículas , Neoplasias , Humanos , Animais , Camundongos , Interleucina-2 , Polilisina , Injeções Intralesionais , Neoplasias/tratamento farmacológico , Linfócitos T CD8-Positivos , Anticorpos , Vacinação , Linhagem Celular Tumoral , Microambiente Tumoral
5.
Cancers (Basel) ; 16(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38201618

RESUMO

BACKGROUND AND PURPOSE: Chimeric antigen receptor (CAR) T cells have been relatively ineffective against solid tumors. Low-dose radiation which can be delivered to multiple sites of metastases by targeted radionuclide therapy (TRT) can elicit immunostimulatory effects. However, TRT has never been combined with CAR T cells against solid tumors in a clinical setting. This study investigated the effects of radiation delivered by Lutetium-177 (177Lu) and Actinium-225 (225Ac) on the viability and effector function of CAR T cells in vitro to evaluate the feasibility of such therapeutic combinations. After the irradiation of anti-GD2 CAR T cells with various doses of radiation delivered by 177Lu or 225Ac, their viability and cytotoxic activity against GD2-expressing human CHLA-20 neuroblastoma and melanoma M21 cells were determined by flow cytometry. The expression of the exhaustion marker PD-1, activation marker CD69 and the activating receptor NKG2D was measured on the irradiated anti-GD2 CAR T cells. Both 177Lu and 225Ac displayed a dose-dependent toxicity on anti-GD2 CAR T cells. However, radiation enhanced the cytotoxic activity of these CAR T cells against CHLA-20 and M21 irrespective of the dose tested and the type of radionuclide. No significant changes in the expression of PD-1, CD69 and NKG2D was noted on the CAR T cells following irradiation. Given a lower CAR T cell viability at equal doses and an enhancement of cytotoxic activity irrespective of the radionuclide type, 177Lu-based TRT may be preferred over 225Ac-based TRT when evaluating a potential synergism between these therapies in vivo against solid tumors.

6.
Nat Commun ; 13(1): 4948, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999216

RESUMO

Radiation therapy (RT) activates an in situ vaccine effect when combined with immune checkpoint blockade (ICB), yet this effect may be limited because RT does not fully optimize tumor antigen presentation or fully overcome suppressive mechanisms in the tumor-immune microenvironment. To overcome this, we develop a multifunctional nanoparticle composed of polylysine, iron oxide, and CpG (PIC) to increase tumor antigen presentation, increase the ratio of M1:M2 tumor-associated macrophages, and enhance stimulation of a type I interferon response in conjunction with RT. In syngeneic immunologically "cold" murine tumor models, the combination of RT, PIC, and ICB significantly improves tumor response and overall survival resulting in cure of many mice and consistent activation of tumor-specific immune memory. Combining RT with PIC to elicit a robust in situ vaccine effect presents a simple and readily translatable strategy to potentiate adaptive anti-tumor immunity and augment response to ICB or potentially other immunotherapies.


Assuntos
Nanopartículas Multifuncionais , Neoplasias , Animais , Antígenos de Neoplasias , Linhagem Celular Tumoral , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Camundongos , Neoplasias/radioterapia , Microambiente Tumoral , Vacinação
7.
Pharmaceutics ; 15(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36678756

RESUMO

Targeted radionuclide therapy (TRT) and immunotherapy are rapidly growing classes of cancer treatments. Basic, translational, and clinical research are now investigating therapeutic combinations of these agents. In comparison to external beam radiation therapy (EBRT), TRT has the unique advantage of treating all disease sites following intravenous injection and selective tumor uptake and retention-a particularly beneficial property in metastatic disease settings. The therapeutic value of combining radiation therapy with immune checkpoint blockade to treat metastases has been demonstrated in preclinical studies, whereas results of clinical studies have been mixed. Several clinical trials combining TRT and immune checkpoint blockade have been initiated based on preclinical studies combining these with EBRT and/or TRT. Despite the interest in translation of TRT and immunotherapy combinations, many questions remain surrounding the mechanisms of interaction and the optimal approach to clinical implementation of these combinations. This review highlights the mechanisms of interaction between anti-tumor immunity and radiation therapy and the status of basic and translational research and clinical trials investigating combinations of TRT and immunotherapies.

8.
Theranostics ; 11(13): 6120-6137, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995649

RESUMO

Rationale: Clinical interest in combining targeted radionuclide therapies (TRT) with immunotherapies is growing. External beam radiation therapy (EBRT) activates a type 1 interferon (IFN1) response mediated via stimulator of interferon genes (STING), and this is critical to its therapeutic interaction with immune checkpoint blockade. However, little is known about the time course of IFN1 activation after EBRT or whether this may be induced by decay of a TRT source. Methods: We examined the IFN1 response and expression of immune susceptibility markers in B78 and B16 melanomas and MOC2 head and neck cancer murine models using qPCR and western blot. For TRT, we used 90Y chelated to NM600, an alkylphosphocholine analog that exhibits selective uptake and retention in tumor cells including B78 and MOC2. Results: We observed significant IFN1 activation in all cell lines, with peak activation in B78, B16, and MOC2 cell lines occurring 7, 7, and 1 days, respectively, following RT for all doses. This effect was STING-dependent. Select IFN response genes remained upregulated at 14 days following RT. IFN1 activation following STING agonist treatment in vitro was identical to RT suggesting time course differences between cell lines were mediated by STING pathway kinetics and not DNA damage susceptibility. In vivo delivery of EBRT and TRT to B78 and MOC2 tumors resulted in a comparable time course and magnitude of IFN1 activation. In the MOC2 model, the combination of 90Y-NM600 and dual checkpoint blockade therapy reduced tumor growth and prolonged survival compared to single agent therapy and cumulative dose equivalent combination EBRT and dual checkpoint blockade therapy. Conclusions: We report the time course of the STING-dependent IFN1 response following radiation in multiple murine tumor models. We show the potential of TRT to stimulate IFN1 activation that is comparable to that observed with EBRT and this may be critical to the therapeutic integration of TRT with immunotherapies.


Assuntos
Carcinoma de Células Escamosas/radioterapia , Interferon Tipo I/fisiologia , Melanoma Experimental/radioterapia , Animais , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/fisiopatologia , Linhagem Celular Tumoral , Terapia Combinada , Relação Dose-Resposta à Radiação , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Técnicas de Inativação de Genes , Neoplasias de Cabeça e Pescoço/patologia , Inibidores de Checkpoint Imunológico , Interferon Tipo I/biossíntese , Interferon Tipo I/genética , Linfócitos/efeitos dos fármacos , Linfócitos/efeitos da radiação , Melanoma Experimental/imunologia , Melanoma Experimental/fisiopatologia , Proteínas de Membrana/agonistas , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/fisiologia , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/uso terapêutico , Fatores de Tempo , Proteína Tumoral 1 Controlada por Tradução , Ensaio Tumoral de Célula-Tronco , Regulação para Cima , Radioisótopos de Ítrio/farmacocinética , Radioisótopos de Ítrio/uso terapêutico
9.
J Sleep Res ; 30(3): e13139, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32672393

RESUMO

Sleep is known to occur in most, if not all, animals studied thus far. Recent studies demonstrate the presence of sleep in flatworms and jellyfish, suggesting that this behaviour evolved early in the evolution of animals. Sharks are the earliest known extant, jawed vertebrates and may play an important role in understanding the evolutionary history of sleep in vertebrates, and yet, it is unknown whether they sleep. The Port Jackson (Heterodontus portusjacksoni) and draughtsboard (Cephaloscyllium isabellum) sharks are both benthic, buccal pumping species and remain motionless for extended periods of time. Whether these periods of prolonged inactivity represent sleep or quiet wakefulness is unknown. A key criterion for separating sleep from other quiescent states is an increased arousal threshold. We show here that inactive sharks of both species require significantly higher levels of electric stimulation before they show a visible response. Sharks deprived of rest, however, show no significant compensatory increase in restfulness during their normal active period following enforced swimming. Nonetheless, increased arousal thresholds in inactive animals suggest that these two species of shark sleep - the first such demonstration for members of this group of vertebrates. Further research, including electrophysiological studies, on these and other sharks, is required for a comprehensive understanding of sleep in cartilaginous fishes.


Assuntos
Sono/fisiologia , Animais , Tubarões
10.
J Biol Rhythms ; 35(5): 476-488, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32525441

RESUMO

Sharks are an interesting group of vertebrates, as many species swim continuously to "ram" oxygen-rich seawater over their gills (ram ventilators), whereas other species "pump" seawater over their gills by manipulating buccal cavity volume while remaining motionless (buccal pumpers). This difference in respiratory physiology raises the question: What are the implications of these differences in lifestyle for circadian rhythms? We investigated the diel activity patterns of 5 species of sharks, including 3 ram ventilating species: the school shark (Galeorhinus galeus), the spotted estuary smooth-hound (Mustelus lenticulatus), and the spiny dogfish (Squalus acanthias); and 2 buccal pumping species: the Port Jackson (Heterodontus portusjacksoni) and draughtsboard (Cephaloscyllium isabellum) sharks. We measured the amount, duration, and distance traveled while swimming over multiple days under a 12:12 light:dark light regime for all species and used modified light regimes for species with a clear diel rhythm in activity. We identified a surprising diversity of activity rhythms. The school shark and smooth-hound swam continuously; however, whereas the school shark swam at the same speed and covered the same distance during the day and night, the smooth-hound swam slower at night and traversed a shorter distance. A similar pattern was observed in the spiny dogfish, although this shark swam less overall. Both the Port Jackson and draughtsboard sharks showed a marked nocturnal preference for swimming. This pattern was muted and disrupted during constant light and constant dark regimes, although circadian organization of this pattern was maintained under certain conditions. The consequences of these patterns for other biological processes, such as sleep, remain unclear. Nonetheless, these 5 species demonstrate remarkable diversity within the activity rhythms of sharks.


Assuntos
Ritmo Circadiano , Tubarões/fisiologia , Animais , Escuridão , Feminino , Brânquias/metabolismo , Masculino , Sono , Luz Solar , Natação
11.
J Exp Biol ; 222(Pt 14)2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31345949

RESUMO

The viviparous sea snakes (Hydrophiinae) are a secondarily aquatic radiation of more than 60 species that possess many phenotypic adaptations to marine life. However, virtually nothing is known of the role and sensitivity of hearing in sea snakes. This study investigated the hearing sensitivity of the fully marine sea snake Hydrophis stokesii by measuring auditory evoked potential (AEP) audiograms for two individuals. AEPs were recorded from 40 Hz (the lowest frequency tested) up to 600 Hz, with a peak in sensitivity identified at 60 Hz (163.5 dB re. 1 µPa or 123 dB re. 1 µm s-2). Our data suggest that sea snakes are sensitive to low-frequency sounds but have relatively low sensitivity compared with bony fishes and marine turtles. Additional studies are required to understand the role of sound in sea snake life history and further assess these species' vulnerability to anthropogenic noise.


Assuntos
Potenciais Evocados Auditivos , Audição/fisiologia , Hydrophiidae/fisiologia , Animais
12.
Sci Rep ; 9(1): 6924, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-31061394

RESUMO

The effect of sound on the behaviour of sharks has not been investigated since the 1970s. Sound is, however, an important sensory stimulus underwater, as it can spread in all directions quickly and propagate further than any other sensory cue. We used a baited underwater camera rig to record the behavioural responses of eight species of sharks (seven reef and coastal shark species and the white shark, Carcharodon carcharias) to the playback of two distinct sound stimuli in the wild: an orca call sequence and an artificially generated sound. When sounds were playing, reef and coastal sharks were less numerous in the area, were responsible for fewer interactions with the baited test rigs, and displayed less 'inquisitive' behaviour, compared to during silent control trials. White sharks spent less time around the baited camera rig when the artificial sound was presented, but showed no significant difference in behaviour in response to orca calls. The use of the presented acoustic stimuli alone is not an effective deterrent for C. carcharias. The behavioural response of reef sharks to sound raises concern about the effects of anthropogenic noise on these taxa.


Assuntos
Comportamento Animal , Tubarões , Som , Água , Animais , Imersão , Especificidade da Espécie , Natação
13.
PLoS One ; 14(3): e0212851, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30856187

RESUMO

Personal shark deterrents offer the potential of a non-lethal solution to protect individuals from negative interactions with sharks, but the claims of effectiveness of most deterrents are based on theory rather than robust testing of the devices themselves. Therefore, there is a clear need for thorough testing of commercially available shark deterrents to provide the public with information on their effectiveness. Using a modified stereo-camera system, we quantified behavioural interactions between Carcharodon carcharias (white sharks) and a baited target in the presence of a commercially available electric anklet shark deterrent, the Electronic Shark Defense System (ESDS). The stereo-camera system enabled accurate assessment of the behavioural responses of C. carcharias when approaching an ESDS. We found that the ESDS had limited meaningful effect on the behaviour of C. carcharias, with no significant reduction in the proportion of sharks interacting with the bait in the presence of the active device. At close proximity (< 15.5 cm), the active ESDS did show a significant reduction in the number of sharks biting the bait, but this was countered by an increase in other, less aggressive, interactions. The ESDS discharged at a frequency of 7.8 Hz every 5.1 s for 2.5 s, followed by an inactive interval of 2.6 s. As a result, many sharks may have encountered the device in its inactive state, resulting in a reduced behavioural response. Consequently, decreasing the inactive interval between pulses may improve the overall effectiveness of the device, but this would not improve the effective deterrent range of the device, which is primarily a factor of the voltage gradient rather than the stimulus frequency. In conclusion, given the very short effective range of the ESDS and its unreliable deterrent effect, combined with the fact that shark-bite incidents are very rare, it is unlikely that the current device would significantly reduce the risk of a negative interaction with C. carcharias.


Assuntos
Mordeduras e Picadas/prevenção & controle , Comportamento Predatório , Tubarões/fisiologia , Dispositivos Eletrônicos Vestíveis , Animais , Técnicas de Observação do Comportamento/métodos , Feminino , Humanos , Oceano Índico , Atividade Motora/fisiologia , Tecnologia de Sensoriamento Remoto/métodos , África do Sul , Gravação em Vídeo/métodos
14.
Animals (Basel) ; 8(6)2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895814

RESUMO

This retrospective study of cat admissions to RSPCA Queensland shelters describes changes associated with improved outcomes ending in live release in 2016 compared to 2011. There were 13,911 cat admissions in 2011 and 13,220 in 2016, with approximately 50% in both years admitted as strays from the general public or council contracts. In contrast, owner surrenders halved from 30% to 15% of admissions. Percentages of admissions ending in euthanasia decreased from 58% to 15%. Only 5% of cat admissions were reclaimed in each of these years, but the percentage rehomed increased from 34% to 74%, of which 61% of the increase was contributed by in-shelter adoptions and 39% from non-shelter sites, predominately retail partnerships. The percentage temporarily fostered until rehoming doubled. In 2011, euthanasias were most common for medical (32% of all euthanasias), behavioral (36%) and age/shelter number (30%) reasons, whereas in 2016, 69% of euthanasias were for medical reasons. The number of young kittens euthanized decreased from 1116 in 2011 to 22 in 2016. The number of cats classified as feral and euthanized decreased from 1178 to 132, in association with increased time for assessment of behavior and increased use of behavior modification programs and foster care. We attribute the improved cat outcomes to strategies that increased adoptions and reduced euthanasia of young kittens and poorly socialized cats, including foster programs. To achieve further decreases in euthanasia, strategies to decrease intake would be highly beneficial, such as those targeted to reduce stray cat admissions.

15.
ACS Appl Mater Interfaces ; 9(37): 32008-32017, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28876889

RESUMO

The optical properties of meta-alkoxy-substituted difluoroboron dibenzoylmethane dyes were investigated in solution and in the solid state. Meta-alkoxy substitution induced strong intramolecular charge transfer (ICT) from the oxygen-donating substituent to the halide and boron acceptors in the excited state, as compared to the π-π* transition that is observed with para-alkoxy substitution. The optical properties of para- and meta-substituted alkoxy boron dyes were evaluated by calculations, in dilute solution, and in solid-state films. When embedded in amorphous matrixes (e.g., PLA, PMMA, PS, cholesterol), all dyes showed fluorescence (F) and phosphorescence (P) emission. In this report, we show that meta-substitution resulted in enhanced solvatochromism and an increased phosphorescence-to-fluorescence ratio in solid-state films compared to analogous para-substituted samples. With enhanced phosphorescence intensity via the heavy-atom effect, iodo-substituted dyes were further studied in PLA-PEG nanoparticles. Oxygen calibrations revealed stronger phosphorescence and a greater oxygen-sensing range for the meta- versus para-alkoxy-substituted dyes, features that are important for oxygen-sensing materials design.

16.
Biomacromolecules ; 18(2): 551-561, 2017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-28150934

RESUMO

Luminescent difluoroboron ß-diketonate poly(lactic acid) (BF2bdkPLA) materials serve as biological imaging agents. In this study, dye structures were modified to achieve emission colors that span the visible region with potential for multiplexing applications. Four dyes with varying π-conjugation (phenyl, naphthyl) and donor groups (-OMe, -NMe2) were coupled to PLLA-PEG block copolymers (∼11 kDa) by a postpolymerization Mitsunobu reaction. The resulting dye-polymer conjugates were fabricated as nanoparticles (∼55 nm diameter) to produce nanomaterials with a range of emission colors (420-640 nm). For increased stability, dye-PLLA-PEG conjugates were also blended with dye-free PDLA-PEG to form stereocomplex nanoparticles of smaller size (∼45 nm diameter). The decreased dye loading in the stereoblocks blue-shifted the emission, generating a broader range of fluorescence colors (410-620 nm). Tumor accumulation was confirmed in a murine model through biodistribution studies with a red emitting dimethyl amino-substituted dye-polymer analogue. The synthesis, optical properties, oxygen-sensing capabilities, and stability of these block copolymer nanoparticles are presented.


Assuntos
Compostos de Boro/química , Hidrocarbonetos Fluorados/química , Cetonas/química , Luminescência , Nanopartículas/química , Polietilenoglicóis/química , Polímeros/química , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C
17.
Chempluschem ; 82(3): 399-406, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31962036

RESUMO

Difluoroboron ß-diketonate-polylactides are versatile oxygen-sensing materials. These materials have both fluorescence (F) and oxygen-sensitive, room-temperature phosphorescence (RTP). The fluorescence, being insensitive to oxygen, can act as an internal standard to the changing phosphorescence, and ratiometric sensing of oxygen can be achieved with these simple, single-component materials. To expand the range of colors for this family of fluorophores, a series of thienyl-phenyl-substituted dyes were synthesized with initiator sites for the ring-opening polymerization of lactide. Heavy atoms (Br and I) were added to the dye to modulate the phosphorescence intensity. These halide-substituted thiophene dyes readily aggregated in the poly(lactic acid) (PLA) matrix, generating two fluorescence peaks in air, one for monomer emission and another for aggregate emission. When the dye was dilute in PLA, as a blend, the iodo-thienyl derivative showed impressive singlet-triplet splitting, with blue fluorescence (440 nm) and orange phosphorescence (585 nm), the largest gap recorded for a boron ß-diketonate dye. Nanoparticles fabricated from a mixture of PLA and dye-PLA conjugated polymer benefited from the large singlet-triplet splitting to yield oxygen sensitivity at levels between 0 and 21 %, which can be utilized in biological oxygen-sensing applications.

18.
PLoS One ; 11(7): e0157717, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27368059

RESUMO

Sharks play a vital role in the health of marine ecosystems, but the potential threat that sharks pose to humans is a reminder of our vulnerability when entering the ocean. Personal shark deterrents are being marketed as the solution to mitigate the threat that sharks pose. However, the effectiveness claims of many personal deterrents are based on our knowledge of shark sensory biology rather than robust testing of the devices themselves, as most have not been subjected to independent scientific studies. Therefore, there is a clear need for thorough testing of commercially available shark deterrents to provide the public with recommendations of their effectiveness. Using a modified stereo-camera system, we quantified behavioural interactions between white sharks (Carcharodon carcharias) and a baited target in the presence of a commercially available, personal electric shark deterrent (Shark Shield Freedom7™). The stereo-camera system enabled an accurate assessment of the behavioural responses of C. carcharias when encountering a non-lethal electric field many times stronger than what they would naturally experience. Upon their first observed encounter, all C. carcharias were repelled at a mean (± std. error) proximity of 131 (± 10.3) cm, which corresponded to a mean voltage gradient of 9.7 (± 0.9) V/m. With each subsequent encounter, their proximity decreased by an average of 11.6 cm, which corresponded to an increase in tolerance to the electric field by an average of 2.6 (± 0.5) V/m per encounter. Despite the increase in tolerance, sharks continued to be deterred from interacting for the duration of each trial when in the presence of an active Shark Shield™. Furthermore, the findings provide no support to the theory that electric deterrents attract sharks. The results of this study provide quantitative evidence of the effectiveness of a non-lethal electric shark deterrent, its influence on the behaviour of C. carcharias, and an accurate method for testing other shark deterrent technologies.


Assuntos
Comportamento Animal , Eletricidade , Tubarões , Animais , Habituação Psicofisiológica , Humanos , Segurança , Tubarões/fisiologia , Fatores de Tempo
19.
RSC Adv ; 6(85): 81631-81635, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28670446

RESUMO

Optical properties of biphenyl difluoroboron ß-diketonates were studied in poly(lactic acid) (PLA) blends. Increased conjugation lowered the emission energy, decreased the singlet-triplet energy gap and yielded blue thermally activated delayed fluorescence (TADF). The properties of these biphenyl dyes may inform organic light emitting diode (OLED) and bioimaging agent design.

20.
ACS Appl Mater Interfaces ; 7(42): 23633-43, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26480236

RESUMO

The dual-emissive properties of solid-state difluoroboron ß-diketonate-poly(lactic acid) (BF2bdkPLA) materials have been utilized for biological oxygen sensing. In this work, BF2dbm(X)PLA materials were synthesized, where X = H, F, Cl, Br, and I. The effects of changing the halide substituent and PLA polymer chain length on the optical properties in dilute CH2Cl2 solutions and solid-state polymer films were studied. These luminescent materials show fluorescence, phosphorescence, and lifetime tunability on the basis of molecular weight, as well as lifetime modulation via the halide substituent. Short BF2dbm(Br)PLA (6.0 kDa) and both short and long BF2dbm(I)PLA polymers (6.0 or 20.3 kDa) have fluorescence and intense phosphorescence ideal for ratiometric oxygen sensing. The lighter halide-dye polymers with hydrogen, fluorine, and chlorine substitution have longer phosphorescence lifetimes and can be utilized as ultrasensitive oxygen sensors. Photostability was also analyzed for the polymer films.


Assuntos
Técnicas Biossensoriais , Compostos de Boro/química , Oxigênio/isolamento & purificação , Poliésteres/química , Fluorescência , Hidrogênio/química , Oxigênio/química , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA