Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Transl Res ; 257: 66-77, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36758791

RESUMO

Traumatic Brain Injury (TBI) is a major cause of death and disability in the US and a recognized risk factor for the development of Alzheimer's disease (AD). The relationship between these conditions is not completely understood, but the conditions may share additive or synergistic pathological hallmarks that may serve as novel therapeutic targets. Heightened inflammasome signaling plays a critical role in the pathogenesis of central nervous system injury (CNS) and the release of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) speck from neurons and activated microglia contribute significantly to TBI and AD pathology. This study investigated whether inflammasome signaling after TBI was augmented in AD and whether this signaling pathway impacted biochemical and neuropathological outcomes and overall cognitive function. Five-month-old, 3xTg mice and respective wild type controls were randomized and underwent moderate controlled cortical impact (CCI) injury or served as sham/uninjured controls. Animals were sacrificed at 1 hour, 1 day, or 1 week after TBI to assess acute pathology or at 12 weeks after assessing cognitive function. The ipsilateral cerebral cortex was processed for inflammasome protein expression by immunoblotting. Mice were evaluated for behavior by open field (3 days), novel object recognition (2 weeks), and Morris water maze (6 weeks) testing after TBI. There was a statistically significant increase in the expression of inflammasome signaling proteins Caspase-1, Caspase-8, ASC, and interleukin (IL)-1ß after TBI in both wild type and 3xTg animals. At 1-day post injury, significant increases in ASC and IL-1ß protein expression were measured in AD TBI mice compared to WT TBI. Behavioral testing showed that injured AD mice had altered cognitive function when compared to injured WT mice. Elevated Aß was seen in the ipsilateral cortex and hippocampus of sham and injured AD when compared to respective groups at 12 weeks post injury. Moreover, treatment of injured AD mice with IC100, an anti-ASC monoclonal antibody, inhibited the inflammasome, as evidenced by IL-1ß reduction in the injured cortex at 1-week post injury. These findings show that the inflammasome response is heightened in mice genetically predisposed to AD and suggests that AD may exacerbate TBI pathology. Thus, dampening inflammasome signaling may offer a novel approach for the treatment of AD and TBI.


Assuntos
Doença de Alzheimer , Lesões Encefálicas Traumáticas , Camundongos , Animais , Inflamassomos/metabolismo , Doença de Alzheimer/genética , Predisposição Genética para Doença , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/genética , Apoptose
3.
Transl Stroke Res ; 13(6): 898-912, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35306629

RESUMO

Approximately 50% of stroke survivors experience gastrointestinal complications. The innate immune response plays a role in changes to the gut-brain axis after stroke. The purpose of this study is to examine the importance of inflammasome-mediated pyroptosis in disruption of the gut-brain axis after experimental stroke. B6129 mice were subjected to a closed-head photothrombotic stroke. We examined the time course of inflammasome protein expression in brain and intestinal lysate using western blot analysis at 1-, 3-, and 7-days post-injury for caspase-1, interleukin-1ß, nod-like receptor protein 3 (NLRP3), and apoptosis speck-like protein containing a caspase-recruiting domain (ASC) and gasdermin-D (GSDMD) cleavage. In a separate group of mice, we processed brain tissue 24 and 72 h after thrombotic stroke for immunohistochemical analysis of neuronal and endothelial cell pyroptosis. We examined intestinal tissue for morphological changes and pyroptosis of macrophages. We performed behavioral tests and assessed gut permeability changes to confirm functional changes after stroke. Our data show that thrombotic stroke induces inflammasome activation in the brain and intestinal tissue up to 7-day post-injury as well as pyroptosis of neurons, cerebral endothelial cells, and intestinal macrophages. We found that thrombotic stroke leads to neurocognitive and motor function deficits as well as increased gut permeability. Finally, the adoptive transfer of serum-derived EVs from stroke mice into naive induced inflammasome activation in intestinal tissues. Taken together, these results provide novel information regarding possible mechanisms underlying gut complications after stroke and the identification of new therapeutic targets for reducing the widespread consequences of ischemic brain injury.


Assuntos
Acidente Vascular Cerebral , AVC Trombótico , Animais , Camundongos , Piroptose , Inflamassomos/metabolismo , Células Endoteliais/metabolismo , Eixo Encéfalo-Intestino , Caspases/metabolismo
4.
J Neurotrauma ; 38(5): 646-654, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32669032

RESUMO

Traumatic brain injury (TBI) patients frequently develop cardiopulmonary system complications such as acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). However, the mechanism by which TBI causes ALI/ARDS is not fully understood. Here, we used a severe TBI model to examine the effects of a low-molecular-weight heparin, enoxaparin, on inflammasome activation and lung injury damage. We investigated whether enoxaparin inhibits ALI and inflammasome signaling protein expression in the brain and lungs after TBI in mice. C57/BL6 mice were subjected to severe TBI and were treated with vehicle or 1 mg/kg of enoxaparin 30 min after injury. Lung and brain tissue were collected 24 h post-TBI and were analyzed by immunoblotting for expression of the inflammasome proteins, caspase-1 and interleukin (IL)-1ß. In addition, lung tissue was collected for histological analysis to determine ALI scoring and neutrophil and macrophage infiltration post-injury. Our data show that severe TBI induces increased expression of inflammasome proteins caspase-1 and IL-1ß in the brain and lungs of mice after injury. Treatment with enoxaparin attenuated inflammasome expression in the brain and lungs 24 h after injury. Enoxaparin significantly decreased ALI score as well as neutrophil and macrophage infiltration in lungs at 24 h after injury. This study demonstrates that enoxaparin attenuates ALI and inhibits inflammasome expression in the brain and lungs after TBI. These findings support the hypothesis that inhibition of the neural-respiratory inflammasome axis that is activated after TBI may have therapeutic potential.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/prevenção & controle , Anticoagulantes/uso terapêutico , Lesões Encefálicas Traumáticas/complicações , Enoxaparina/uso terapêutico , Inflamassomos/metabolismo , Lesão Pulmonar Aguda/etiologia , Animais , Lesões Encefálicas Traumáticas/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos
5.
Cells ; 8(1)2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30669285

RESUMO

Approximately 30% of traumatic brain injured patients suffer from acute lung injury or acute respiratory distress syndrome. Our previous work revealed that extracellular vesicle (EV)-mediated inflammasome signaling plays a crucial role in the pathophysiology of traumatic brain injury (TBI)-induced lung injury. Here, serum-derived EVs from severe TBI patients were analyzed for particle size, concentration, origin, and levels of the inflammasome component, an apoptosis-associated speck-like protein containing a caspase-recruiting domain (ASC). Serum ASC levels were analyzed from EV obtained from patients that presented lung injury after TBI and compared them to EV obtained from patients that did not show any signs of lung injury. EVs were co-cultured with lung human microvascular endothelial cells (HMVEC-L) to evaluate inflammasome activation and endothelial cell pyroptosis. TBI patients had a significant increase in the number of serum-derived EVs and levels of ASC. Severe TBI patients with lung injury had a significantly higher level of ASC in serum and serum-derived EVs compared to individuals without lung injury. Only EVs isolated from head trauma patients with gunshot wounds were of neural origin. Delivery of serum-derived EVs to HMVEC-L activated the inflammasome and resulted in endothelial cell pyroptosis. Thus, serum-derived EVs and inflammasome proteins play a critical role in the pathogenesis of TBI-induced lung injury, supporting activation of an EV-mediated neural-respiratory inflammasome axis in TBI-induced lung injury.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Pulmão/patologia , Piroptose , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Lesões Encefálicas Traumáticas/sangue , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Feminino , Humanos , Inflamassomos/metabolismo , Pulmão/irrigação sanguínea , Lesão Pulmonar/etiologia , Masculino , Pessoa de Meia-Idade , Curva ROC , Adulto Jovem
6.
J Neurotrauma ; 35(17): 2067-2076, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29648974

RESUMO

Approximately 20-25% of traumatic brain injury (TBI) subjects develop acute lung injury (ALI), but the pathomechanisms of TBI-induced ALI remain poorly defined. Our previous work has shown that the inflammasome plays a critical role in TBI-induced secondary pathophysiology and that inflammasome proteins are released in extracellular vesicles (EV) after TBI. Here we investigated whether EV-mediated inflammasome signaling contributed to the etiology of TBI-induced ALI. C57/BL6 male mice were subjected to controlled cortical impact (CCI), and the brains and lungs were examined for inflammasome activation and ALI at 4 and 24 h after TBI. We show that TBI releases EV containing inflammasome proteins into serum that target the lung to cause ALI, supporting activation of a neural-respiratory-inflammasome axis. Administration of a low-molecular-weight heparin (enoxaparin, a blocker of EV uptake) or treatment with a monoclonal antibody against apoptosis speck-like staining protein containing a caspase recruitment domain (anti-ASC) after adoptive transfer of EV isolated from TBI-injured mice significantly inhibited inflammasome activation in the lungs of recipient mice resulting in improved ALI scores.This axis constitutes an important arm of the innate inflammatory response in lung pathology after TBI and targeting this axis represents a novel therapeutic treatment for TBI-induced ALI.


Assuntos
Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/fisiopatologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/fisiopatologia , Inflamassomos , Sistema Nervoso/fisiopatologia , Sistema Respiratório/fisiopatologia , Animais , Anticoagulantes/uso terapêutico , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Enoxaparina/uso terapêutico , Espaço Extracelular/metabolismo , Proteína HMGB1/biossíntese , Proteína HMGB1/genética , Imunidade Inata , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
J Neurotrauma ; 33(16): 1522-34, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-26541248

RESUMO

Reactions of both astrocytes and microglia to central nervous system injury can be beneficial or detrimental to recovery. To gain insights into the functional importance of gliosis, we developed a new model of adolescent closed-head injury (CHI) and interrogated the behavioral, physiological, and cellular outcomes after a concussive CHI in leukemia inhibitory factor (LIF) haplodeficient mice. These mice were chosen because LIF is important for astrocyte and microglial activation. Behaviorally, the LIF haplodeficient animals were equally impaired 4 h after the injury, but in the subsequent 2 weeks, the LIF haplodeficient mice acquired more severe motor and sensory deficits, compared with wild type mice. The prolonged accumulation of neurological impairment was accompanied by desynchronization of the gliotic response, increased cell death, axonal degeneration, diminished callosal compound action potential, and hypomyelination. Our results clearly show that LIF is an essential injury-induced cytokine that is required to prevent the propagation of secondary neurodegeneration.


Assuntos
Citocinas/fisiologia , Traumatismos Cranianos Fechados/metabolismo , Traumatismos Cranianos Fechados/patologia , Traumatismos Cranianos Fechados/fisiopatologia , Fator Inibidor de Leucemia/fisiologia , Animais , Citocinas/deficiência , Modelos Animais de Doenças , Feminino , Fator Inibidor de Leucemia/deficiência , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA