Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 44(8): 1319-31, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26895981

RESUMO

AMG 416 (etelcalcetide) is a novel synthetic peptide agonist of the calcium-sensing receptor composed of a linear chain of seven d-amino acids (referred to as the d-amino acid backbone) with a d-cysteine linked to an l-cysteine via a disulfide bond. AMG 416 contains four basic d-arginine residues and is a +4 charged peptide at physiologic pH with a mol. wt. of 1048.3 Da. The pharmacokinetics (PK), disposition, and potential of AMG 416 to cause drug-drug interaction were investigated in nonclinical studies with two single (14)C-labels placed either at a potentially metabolically labile acetyl position or on the d-alanine next to d-cysteine in the interior of the d-amino acid backbone. After i.v. dosing, the PK and disposition of AMG 416 were similar in male and female rats. Radioactivity rapidly distributed to most tissues in rats with intact kidneys, and renal elimination was the predominant clearance pathway. No strain-dependent differences were observed. In bilaterally nephrectomized rats, minimal radioactivity (1.2%) was excreted via nonrenal pathways. Biotransformation occurred primarily via disulfide exchange with endogenous thiol-containing molecules in whole blood rather than metabolism by enzymes, such as proteases or cytochrome P450s; the d-amino acid backbone remained unaltered. A substantial proportion of the plasma radioactivity was covalently conjugated to albumin. AMG 416 presents a low risk for P450 or transporter-mediated drug-drug interactions because it showed no interactions in vitro. These studies demonstrated a (14)C label on either the acetyl or the d-alanine in the d-amino acid backbone would be appropriate for clinical studies.


Assuntos
Calcimiméticos/farmacocinética , Peptídeos/farmacocinética , Receptores de Detecção de Cálcio/agonistas , Administração Intravenosa , Animais , Biotransformação , Calcimiméticos/administração & dosagem , Calcimiméticos/sangue , Calcimiméticos/toxicidade , Sistema Enzimático do Citocromo P-450/metabolismo , Cães , Interações Medicamentosas , Feminino , Células HEK293 , Humanos , Rim/metabolismo , Fígado/metabolismo , Masculino , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Estrutura Molecular , Peptídeos/administração & dosagem , Peptídeos/sangue , Peptídeos/toxicidade , Ligação Proteica , Ratos Endogâmicos BN , Receptores de Detecção de Cálcio/química , Receptores de Detecção de Cálcio/metabolismo , Eliminação Renal , Medição de Risco , Albumina Sérica/metabolismo , Relação Estrutura-Atividade , Distribuição Tecidual , Transfecção
2.
Metabolomics ; 12(10)2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28827982

RESUMO

INTRODUCTION: High-dose busulfan (busulfan) is an integral part of the majority of hematopoietic cell transplantation conditioning regimens. Intravenous (IV) busulfan doses are personalized using pharmacokinetics (PK)-based dosing where the patient's IV busulfan clearance is calculated after the first dose and is used to personalize subsequent doses to a target plasma exposure. PK-guided dosing has improved patient outcomes and is clinically accepted but highly resource intensive. OBJECTIVE: We sought to discover endogenous plasma biomarkers predictive of IV busulfan clearance using a global pharmacometabolomics-based approach. METHODS: Using LC-QTOF, we analyzed 59 (discovery) and 88 (validation) plasma samples obtained before IV busulfan administration. RESULTS: In the discovery dataset, we evaluated the association of the relative abundance of 1885 ions with IV busulfan clearance and found 21 ions that were associated with IV busulfan clearance tertiles (r2 ≥ 0.3). Identified compounds were deoxycholic acid and/or chenodeoxycholic acid, and linoleic acid. We used these 21 ions to develop a parsimonious seven-ion linear predictive model that accurately predicted IV busulfan clearance in 93% (discovery) and 78% (validation) of samples. CONCLUSION: IV busulfan clearance was significantly correlated with the relative abundance of 21 ions, seven of which were included in a predictive model that accurately predicted IV busulfan clearance in the majority of the validation samples. These results reinforce the potential of pharmacometabolomics as a critical tool in personalized medicine, with the potential to improve the personalized dosing of drugs with a narrow therapeutic index such as busulfan.

3.
J Pharm Biomed Anal ; 108: 49-55, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25706859

RESUMO

Analysis of pharmaceutical compounds in cerebrospinal fluid (CSF) may present challenges due to the combination of the low protein content in this matrix and relatively low drug concentrations, often corresponding to free drug concentrations in plasma, typically found in CSF. A 30% loss of AMG 579 was observed during preparation of quality control samples and further investigation determined that this loss was likely due to binding to collection tubes. This observation also highlighted the possibility of additional losses of AMG 579 that could occur during collection of clinical samples, such as binding to catheters used in the collection of CSF. Loss of AMG 579 in QC samples was reduced from 30% to 5% when the volume of CSF stored in 1.5 mL vials was increased from 0.06 mL to 1 mL. Modest but unavoidable losses of about 20% of AMG 579 were also found following perfusion through both silicone and polypropylene (Pharmed(®) BPT) collection catheters. Silicone tubing was used for CSF collection based on clinical site preference. An LC-MS/MS method was validated to quantify AMG 579 in human CSF to support clinical testing. The original range of the assay was 1-1000 ng/mL but the LLOQ was subsequently lowered to 0.1 ng/mL to better meet project requirements. Interday bias (% RE) and precision (% CV) were -4.2% and 12.3% at the LLOQ, and less than ± 0.9% and 8.3% for higher concentrations, respectively. The compound was stable in human CSF for at least 5h at room temperature, 55 days at -70 °C (-60 to -80 °C range), and through three freeze-thaw cycles. Careful selection of assay conditions and materials minimized losses of the compound during sample collection and storage. While these losses could not be entirely eliminated, practical sample collection and storage conditions were established to allow for analysis of AMG 579 in human clinical trials.


Assuntos
Benzimidazóis/líquido cefalorraquidiano , Cromatografia Líquida/métodos , Inibidores de Fosfodiesterase/líquido cefalorraquidiano , Pirazinas/líquido cefalorraquidiano , Espectrometria de Massas em Tandem/métodos , Humanos , Limite de Detecção , Manejo de Espécimes/métodos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA