Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
J Am Chem Soc ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592946

RESUMO

Selectively labeling cells with damaged membranes is needed not only for identifying dead cells in culture, but also for imaging membrane barrier dysfunction in pathologies in vivo. Most membrane permeability stains are permanently colored or fluorescent dyes that need washing to remove their non-uptaken extracellular background and reach good image contrast. Others are DNA-binding environment-dependent fluorophores, which lack design modularity, have potential toxicity, and can only detect permeabilization of cell volumes containing a nucleus (i.e., cannot delineate damaged volumes in vivo nor image non-nucleated cell types or compartments). Here, we develop modular fluorogenic probes that reveal the whole cytosolic volume of damaged cells, with near-zero background fluorescence so that no washing is needed. We identify a specific disulfonated fluorogenic probe type that only enters cells with damaged membranes, then is enzymatically activated and marks them. The esterase probe MDG1 is a reliable tool to reveal live cells that have been permeabilized by biological, biochemical, or physical membrane damage, and it can be used in multicolor microscopy. We confirm the modularity of this approach by also adapting it for improved hydrolytic stability, as the redox probe MDG2. We conclude by showing the unique performance of MDG probes in revealing axonal membrane damage (which DNA fluorogens cannot achieve) and in discriminating damage on a cell-by-cell basis in embryos in vivo. The MDG design thus provides powerful modular tools for wash-free in vivo imaging of membrane damage, and indicates how designs may be adapted for selective delivery of drug cargoes to these damaged cells: offering an outlook from selective diagnosis toward therapy of membrane-compromised cells in disease.

2.
Sci Transl Med ; 16(740): eade8560, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536936

RESUMO

One of the biggest challenges in managing multiple sclerosis is the heterogeneity of clinical manifestations and progression trajectories. It still remains to be elucidated whether this heterogeneity is reflected by discrete immune signatures in the blood as a surrogate of disease pathophysiology. Accordingly, individualized treatment selection based on immunobiological principles is still not feasible. Using two independent multicentric longitudinal cohorts of patients with early multiple sclerosis (n = 309 discovery and n = 232 validation), we were able to identify three distinct peripheral blood immunological endophenotypes by a combination of high-dimensional flow cytometry and serum proteomics, followed by unsupervised clustering. Longitudinal clinical and paraclinical follow-up data collected for the cohorts revealed that these endophenotypes were associated with disease trajectories of inflammation versus early structural damage. Investigating the capacity of immunotherapies to normalize endophenotype-specific immune signatures revealed discrete effect sizes as illustrated by the limited effect of interferon-ß on endophenotype 3-related immune signatures. Accordingly, patients who fell into endophenotype 3 subsequently treated with interferon-ß exhibited higher disease progression and MRI activity over a 4-year follow-up compared with treatment with other therapies. We therefore propose that ascertaining a patient's blood immune signature before immunomodulatory treatment initiation may facilitate prediction of clinical disease trajectories and enable personalized treatment decisions based on pathobiological principles.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/genética , Esclerose Múltipla/tratamento farmacológico , Endofenótipos , Interferon beta/uso terapêutico
3.
Neurol Res Pract ; 6(1): 15, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38449051

RESUMO

INTRODUCTION: In Multiple Sclerosis (MS), patients´ characteristics and (bio)markers that reliably predict the individual disease prognosis at disease onset are lacking. Cohort studies allow a close follow-up of MS histories and a thorough phenotyping of patients. Therefore, a multicenter cohort study was initiated to implement a wide spectrum of data and (bio)markers in newly diagnosed patients. METHODS: ProVal-MS (Prospective study to validate a multidimensional decision score that predicts treatment outcome at 24 months in untreated patients with clinically isolated syndrome or early Relapsing-Remitting-MS) is a prospective cohort study in patients with clinically isolated syndrome (CIS) or Relapsing-Remitting (RR)-MS (McDonald 2017 criteria), diagnosed within the last two years, conducted at five academic centers in Southern Germany. The collection of clinical, laboratory, imaging, and paraclinical data as well as biosamples is harmonized across centers. The primary goal is to validate (discrimination and calibration) the previously published DIFUTURE MS-Treatment Decision score (MS-TDS). The score supports clinical decision-making regarding the options of early (within 6 months after study baseline) platform medication (Interferon beta, glatiramer acetate, dimethyl/diroximel fumarate, teriflunomide), or no immediate treatment (> 6 months after baseline) of patients with early RR-MS and CIS by predicting the probability of new or enlarging lesions in cerebral magnetic resonance images (MRIs) between 6 and 24 months. Further objectives are refining the MS-TDS score and providing data to identify new markers reflecting disease course and severity. The project also provides a technical evaluation of the ProVal-MS cohort within the IT-infrastructure of the DIFUTURE consortium (Data Integration for Future Medicine) and assesses the efficacy of the data sharing techniques developed. PERSPECTIVE: Clinical cohorts provide the infrastructure to discover and to validate relevant disease-specific findings. A successful validation of the MS-TDS will add a new clinical decision tool to the armamentarium of practicing MS neurologists from which newly diagnosed MS patients may take advantage. Trial registration ProVal-MS has been registered in the German Clinical Trials Register, `Deutsches Register Klinischer Studien` (DRKS)-ID: DRKS00014034, date of registration: 21 December 2018; https://drks.de/search/en/trial/DRKS00014034.

4.
Nat Neurosci ; 26(10): 1713-1725, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37709997

RESUMO

Multiple sclerosis (MS) involves the infiltration of autoreactive T cells into the CNS, yet we lack a comprehensive understanding of the signaling pathways that regulate this process. Here, we conducted a genome-wide in vivo CRISPR screen in a rat MS model and identified 5 essential brakes and 18 essential facilitators of T cell migration to the CNS. While the transcription factor ETS1 limits entry to the CNS by controlling T cell responsiveness, three functional modules, centered around the adhesion molecule α4-integrin, the chemokine receptor CXCR3 and the GRK2 kinase, are required for CNS migration of autoreactive CD4+ T cells. Single-cell analysis of T cells from individuals with MS confirmed that the expression of these essential regulators correlates with the propensity of CD4+ T cells to reach the CNS. Our data thus reveal key regulators of the fundamental step in the induction of MS lesions.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Ratos , Animais , Esclerose Múltipla/patologia , Sistema Nervoso Central/patologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Linfócitos T/metabolismo , Movimento Celular/genética , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia
5.
Methods Cell Biol ; 177: 125-170, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37451765

RESUMO

In this chapter, we review Automated Tape Collecting Ultramicrotomy (ATUM), which, among other array tomography methods, substantially simplified large-scale volume electron microscopy (vEM) projects. vEM reveals biological structures at nanometer resolution in three dimensions and resolves ambiguities of two-dimensional representations. However, as the structures of interest-like disease hallmarks emerging from neuropathology-are often rare but the field of view is small, this can easily turn a vEM project into a needle in a haystack problem. One solution for this is correlated light and electron microscopy (CLEM), providing tissue context, dynamic and molecular features before switching to targeted vEM to hone in on the object's ultrastructure. This requires precise coordinate transfer between the two imaging modalities (e.g., by micro computed tomography), especially for block face vEM which relies on physical destruction of sections. With array tomography methods, serial ultrathin sections are collected into a tissue library, thus allowing storage of precious samples like human biopsies and enabling repetitive imaging at different resolution levels for an SEM-based search strategy. For this, ATUM has been developed to reliably collect serial ultrathin sections via a conveyor belt onto a plastic tape that is later mounted onto silicon wafers for serial scanning EM (SEM). The ATUM-SEM procedure is highly modular and can be divided into sample preparation, serial ultramicrotomy onto tape, mounting, serial image acquisition-after which the acquired image stacks can be used for analysis. Here, we describe the steps of this workflow and how ATUM-SEM enables targeting and high resolution imaging of specific structures. ATUM-SEM is widely applicable. To illustrate this, we exemplify the approach by reconstructions of focal pathology in an Alzheimer mouse model and CLEM of a specific cortical synapse.


Assuntos
Microtomia , Microscopia Eletrônica de Volume , Camundongos , Animais , Humanos , Microscopia Eletrônica de Varredura , Microtomografia por Raio-X , Microtomia/métodos , Neurônios , Imageamento Tridimensional/métodos
6.
Nat Metab ; 5(8): 1364-1381, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37430025

RESUMO

Inflammation in the central nervous system can impair the function of neuronal mitochondria and contributes to axon degeneration in the common neuroinflammatory disease multiple sclerosis (MS). Here we combine cell-type-specific mitochondrial proteomics with in vivo biosensor imaging to dissect how inflammation alters the molecular composition and functional capacity of neuronal mitochondria. We show that neuroinflammatory lesions in the mouse spinal cord cause widespread and persisting axonal ATP deficiency, which precedes mitochondrial oxidation and calcium overload. This axonal energy deficiency is associated with impaired electron transport chain function, but also an upstream imbalance of tricarboxylic acid (TCA) cycle enzymes, with several, including key rate-limiting, enzymes being depleted in neuronal mitochondria in experimental models and in MS lesions. Notably, viral overexpression of individual TCA enzymes can ameliorate the axonal energy deficits in neuroinflammatory lesions, suggesting that TCA cycle dysfunction in MS may be amendable to therapy.


Assuntos
Esclerose Múltipla , Doenças Neuroinflamatórias , Animais , Camundongos , Axônios/patologia , Esclerose Múltipla/patologia , Neurônios/patologia , Inflamação/patologia
7.
Neuron ; 111(11): 1748-1759.e8, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37071991

RESUMO

In multiple sclerosis, an inflammatory attack results in myelin loss, which can be partially reversed by remyelination. Recent studies suggest that mature oligodendrocytes could contribute to remyelination by generating new myelin. Here, we show that in a mouse model of cortical multiple sclerosis pathology, surviving oligodendrocytes can indeed extend new proximal processes but rarely generate new myelin internodes. Furthermore, drugs that boost myelin recovery by targeting oligodendrocyte precursor cells did not enhance this alternate mode of myelin regeneration. These data indicate that the contribution of surviving oligodendrocytes to myelin recovery in the inflamed mammalian CNS is minor and inhibited by distinct remyelination brakes.


Assuntos
Esclerose Múltipla , Remielinização , Camundongos , Animais , Oligodendroglia/patologia , Bainha de Mielina/patologia , Axônios/patologia , Mamíferos
8.
J Neuroinflammation ; 20(1): 68, 2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36906584

RESUMO

OBJECTIVES: Reactive gliosis is a common pathological hallmark of CNS pathology resulting from neurodegeneration and neuroinflammation. In this study we investigate the capability of a novel monoamine oxidase B (MAO-B) PET ligand to monitor reactive astrogliosis in a transgenic mouse model of Alzheimer`s disease (AD). Furthermore, we performed a pilot study in patients with a range of neurodegenerative and neuroinflammatory conditions. METHODS: A cross-sectional cohort of 24 transgenic (PS2APP) and 25 wild-type mice (age range: 4.3-21.0 months) underwent 60 min dynamic [18F]fluorodeprenyl-D2 ([18F]F-DED), static 18 kDa translocator protein (TSPO, [18F]GE-180) and ß-amyloid ([18F]florbetaben) PET imaging. Quantification was performed via image derived input function (IDIF, cardiac input), simplified non-invasive reference tissue modelling (SRTM2, DVR) and late-phase standardized uptake value ratios (SUVr). Immunohistochemical (IHC) analyses of glial fibrillary acidic protein (GFAP) and MAO-B were performed to validate PET imaging by gold standard assessments. Patients belonging to the Alzheimer's disease continuum (AD, n = 2), Parkinson's disease (PD, n = 2), multiple system atrophy (MSA, n = 2), autoimmune encephalitis (n = 1), oligodendroglioma (n = 1) and one healthy control underwent 60 min dynamic [18F]F-DED PET and the data were analyzed using equivalent quantification strategies. RESULTS: We selected the cerebellum as a pseudo-reference region based on the immunohistochemical comparison of age-matched PS2APP and WT mice. Subsequent PET imaging revealed that PS2APP mice showed elevated hippocampal and thalamic [18F]F-DED DVR when compared to age-matched WT mice at 5 months (thalamus: + 4.3%; p = 0.048), 13 months (hippocampus: + 7.6%, p = 0.022) and 19 months (hippocampus: + 12.3%, p < 0.0001; thalamus: + 15.2%, p < 0.0001). Specific [18F]F-DED DVR increases of PS2APP mice occurred earlier when compared to signal alterations in TSPO and ß-amyloid PET and [18F]F-DED DVR correlated with quantitative immunohistochemistry (hippocampus: R = 0.720, p < 0.001; thalamus: R = 0.727, p = 0.002). Preliminary experience in patients showed [18F]F-DED VT and SUVr patterns, matching the expected topology of reactive astrogliosis in neurodegenerative (MSA) and neuroinflammatory conditions, whereas the patient with oligodendroglioma and the healthy control indicated [18F]F-DED binding following the known physiological MAO-B expression in brain. CONCLUSIONS: [18F]F-DED PET imaging is a promising approach to assess reactive astrogliosis in AD mouse models and patients with neurological diseases.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Oligodendroglioma , Animais , Humanos , Camundongos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Estudos Transversais , Gliose/patologia , Inflamação/metabolismo , Camundongos Transgênicos , Monoaminoxidase/metabolismo , Doenças Neurodegenerativas/metabolismo , Oligodendroglioma/metabolismo , Oligodendroglioma/patologia , Projetos Piloto , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-36823135

RESUMO

BACKGROUND AND OBJECTIVES: Antibodies (Abs) against the cytoplasmic protein glutamic acid decarboxylase 65 (GAD65) are detected in patients with neurologic syndromes together referred to as GAD65-Ab spectrum disorders. The response of some of these patients to plasma exchange or immunoglobulins indicates that GAD65-Abs could contribute to disease pathogenesis at least at some stages of disease. However, the involvement of GAD65-reactive B cells in the CNS is incompletely understood. METHODS: We studied 7 patients with high levels of GAD65-Abs and generated monoclonal Abs (mAbs) derived from single cells in the CSF. Sequence characteristics, reactivity to GAD65, and the role of somatic hypermutations of the mAbs were analyzed. RESULTS: Twelve CSF-derived mAbs were generated originating from 3 patients with short disease duration, and 7/12 of these mAbs (58%) were GAD65 reactive in at least 1 detection assay. Four of 12 (33%) were definitely positive in all 3 detection assays. The intrathecal anti-GAD65 response was polyclonal. GAD65-Abs were mostly of the IgG1 subtype and had undergone affinity maturation. Reversion of 2 GAD65-reactive mAbs to their corresponding germline-encoded unmutated common ancestors abolished GAD65 reactivity. DISCUSSION: GAD65-specific B cells are present in the CNS and represent a sizable fraction of CSF B cells early in the disease course. The anti-GAD65 response in the CSF is polyclonal and shows evidence of antigen-driven affinity maturation required for GAD65 recognition. Our data support the hypothesis that the accumulation of GAD65-specific B cells and plasma cells in the CSF is an important feature of early disease stages.


Assuntos
Autoanticorpos , Glutamato Descarboxilase , Humanos , Anticorpos Monoclonais , Síndrome , Imunoglobulina G
10.
EMBO Mol Med ; 15(2): e16111, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36601738

RESUMO

Functional recovery following incomplete spinal cord injury (SCI) depends on the rewiring of motor circuits during which supraspinal connections form new contacts onto spinal relay neurons. We have recently identified a critical role of the presynaptic organizer FGF22 for the formation of new synapses in the remodeling spinal cord. Here, we now explore whether and how targeted overexpression of FGF22 can be used to mitigate the severe functional consequences of SCI. By targeting FGF22 expression to either long propriospinal neurons, excitatory interneurons, or a broader population of interneurons, we establish that FGF22 can enhance neuronal rewiring both in a circuit-specific and comprehensive way. We can further demonstrate that the latter approach can restore functional recovery when applied either on the day of the lesion or within 24 h. Our study thus establishes viral gene transfer of FGF22 as a new synaptogenic treatment for SCI and defines a critical therapeutic window for its application.


Assuntos
Traumatismos da Medula Espinal , Humanos , Interneurônios/metabolismo , Interneurônios/patologia , Neurônios/metabolismo , Medula Espinal/patologia , Traumatismos da Medula Espinal/terapia , Sinapses/metabolismo
12.
J Exp Med ; 219(11)2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36048016

RESUMO

Epstein-Barr virus (EBV) infection precedes multiple sclerosis (MS) pathology and cross-reactive antibodies might link EBV infection to CNS autoimmunity. As an altered anti-EBV T cell reaction was suggested in MS, we queried peripheral blood T cell receptor ß chain (TCRß) repertoires of 1,395 MS patients, 887 controls, and 35 monozygotic, MS-discordant twin pairs for multimer-confirmed, viral antigen-specific TCRß sequences. We detected more MHC-I-restricted EBV-specific TCRß sequences in MS patients. Differences in genetics or upbringing could be excluded by validation in monozygotic twin pairs discordant for MS. Anti-VLA-4 treatment amplified this observation, while interferon ß- or anti-CD20 treatment did not modulate EBV-specific T cell occurrence. In healthy individuals, EBV-specific CD8+ T cells were of an effector-memory phenotype in peripheral blood and cerebrospinal fluid. In MS patients, cerebrospinal fluid also contained EBV-specific central-memory CD8+ T cells, suggesting recent priming. Therefore, MS is not only preceded by EBV infection, but also associated with broader EBV-specific TCR repertoires, consistent with an ongoing anti-EBV immune reaction in MS.


Assuntos
Infecções por Vírus Epstein-Barr , Esclerose Múltipla , Linfócitos T CD8-Positivos , Infecções por Vírus Epstein-Barr/complicações , Herpesvirus Humano 4 , Humanos , Receptores de Antígenos de Linfócitos T alfa-beta/genética
13.
Clin Nucl Med ; 47(6): 543-544, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35195584

RESUMO

ABSTRACT: A 69-year-old woman presented with progressive dysarthria and cognitive deficits. On MRI, a T2-hyperintense, non-contrast-enhancing lesion was found in the left precentral area. 18F-FET and 18F-FDG PET scans revealed faint amino acid uptake and glucose hypometabolism of the lesion. To assess a neuroinflammatory component, TSPO PET with 18F-GE-180 was performed, where tracer uptake markedly exceeded the T2-hyperintense areas. Histology derived from a stereotactic biopsy findings confirmed John Cunningham virus-associated progressive multifocal leukoencephalopathy. This case underlines that TSPO PET comprises distinct imaging advantages over other established radioligands such as 18F-FET and 18F-FDG in progressive multifocal leukoencephalopathy.


Assuntos
Vírus JC , Leucoencefalopatia Multifocal Progressiva , Idoso , Feminino , Fluordesoxiglucose F18 , Glucose , Humanos , Leucoencefalopatia Multifocal Progressiva/diagnóstico por imagem , Imageamento por Ressonância Magnética , Doenças Neuroinflamatórias , Receptores de GABA
14.
Nature ; 603(7899): 152-158, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35173329

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory disorder of the central nervous system underpinned by partially understood genetic risk factors and environmental triggers and their undefined interactions1,2. Here we investigated the peripheral immune signatures of 61 monozygotic twin pairs discordant for MS to dissect the influence of genetic predisposition and environmental factors. Using complementary multimodal high-throughput and high-dimensional single-cell technologies in conjunction with data-driven computational tools, we identified an inflammatory shift in a monocyte cluster of twins with MS, coupled with the emergence of a population of IL-2 hyper-responsive transitional naive helper T cells as MS-related immune alterations. By integrating data on the immune profiles of healthy monozygotic and dizygotic twin pairs, we estimated the variance in CD25 expression by helper T cells displaying a naive phenotype to be largely driven by genetic and shared early environmental influences. Nonetheless, the expanding helper T cells of twins with MS, which were also elevated in non-twin patients with MS, emerged independent of the individual genetic makeup. These cells expressed central nervous system-homing receptors, exhibited a dysregulated CD25-IL-2 axis, and their proliferative capacity positively correlated with MS severity. Together, our matched-pair analysis of the extended twin approach allowed us to discern genetically and environmentally determined features of an MS-associated immune signature.


Assuntos
Esclerose Múltipla , Predisposição Genética para Doença/genética , Humanos , Interleucina-2/genética , Ligante OX40 , Gêmeos Dizigóticos/genética , Gêmeos Monozigóticos/genética
15.
Neuron ; 110(4): 559-561, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35176237

RESUMO

Transfer between cells is an unexpected addition to the mitochondrial life cycle. In this issue of Neuron, Van der Vlist et al. now provide evidence that M2-macrophages infiltrating sensory ganglia resolve pain by transferring particles containing mitochondria to neurons-thus boosting nociceptors back to normal function.


Assuntos
Gânglios Espinais , Nociceptores , Gânglios Espinais/citologia , Humanos , Mitocôndrias , Neurônios , Nociceptores/metabolismo , Dor/fisiopatologia
16.
Commun Biol ; 5(1): 131, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35169263

RESUMO

In neuroscience research, the refined analysis of rodent locomotion is complex and cumbersome, and access to the technique is limited because of the necessity for expensive equipment. In this study, we implemented a new deep learning-based open-source toolbox for Automated Limb Motion Analysis (ALMA) that requires only basic behavioral equipment and an inexpensive camera. The ALMA toolbox enables the consistent and comprehensive analyses of locomotor kinematics and paw placement and can be applied to neurological conditions affecting the brain and spinal cord. We demonstrated that the ALMA toolbox can (1) robustly track the evolution of locomotor deficits after spinal cord injury, (2) sensitively detect locomotor abnormalities after traumatic brain injury, and (3) correctly predict disease onset in a multiple sclerosis model. We, therefore, established a broadly applicable automated and standardized approach that requires minimal financial and time commitments to facilitate the comprehensive analysis of locomotion in rodent disease models.


Assuntos
Aprendizado Profundo , Traumatismos da Medula Espinal , Animais , Modelos Animais de Doenças , Locomoção , Camundongos
17.
Front Neuroanat ; 15: 732506, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720890

RESUMO

Ultrastructural analysis of discrete neurobiological structures by volume scanning electron microscopy (SEM) often constitutes a "needle-in-the-haystack" problem and therefore relies on sophisticated search strategies. The appropriate SEM approach for a given relocation task not only depends on the desired final image quality but also on the complexity and required accuracy of the screening process. Block-face SEM techniques like Focused Ion Beam or serial block-face SEM are "one-shot" imaging runs by nature and, thus, require precise relocation prior to acquisition. In contrast, "multi-shot" approaches conserve the sectioned tissue through the collection of serial sections onto solid support and allow reimaging. These tissue libraries generated by Array Tomography or Automated Tape Collecting Ultramicrotomy can be screened at low resolution to target high resolution SEM. This is particularly useful if a structure of interest is rare or has been predetermined by correlated light microscopy, which can assign molecular, dynamic and functional information to an ultrastructure. As such approaches require bridging mm to nm scales, they rely on tissue trimming at different stages of sample processing. Relocation is facilitated by endogenous or exogenous landmarks that are visible by several imaging modalities, combined with appropriate registration strategies that allow overlaying images of various sources. Here, we discuss the opportunities of using multi-shot serial sectioning SEM approaches, as well as suitable trimming and registration techniques, to slim down the high-resolution imaging volume to the actual structure of interest and hence facilitate ambitious targeted volume SEM projects.

18.
Brain ; 144(9): 2683-2695, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33757118

RESUMO

Progressive multifocal leukoencephalopathy (PML) is a severe infection of the CNS caused by the polyomavirus JC that can occur in multiple sclerosis patients treated with natalizumab. Clinical management of patients with natalizumab-associated PML is challenging not least because current imaging tools for the early detection, longitudinal monitoring and differential diagnosis of PML lesions are limited. Here we evaluate whether translocator protein (TSPO) PET imaging can be applied to monitor the inflammatory activity of PML lesions over time and differentiate them from multiple sclerosis lesions. For this monocentre pilot study we followed eight patients with natalizumab-associated PML with PET imaging using the TSPO radioligand 18F-GE-180 combined with frequent 3 T MRI. In addition we compared TSPO PET signals in PML lesions with the signal pattern of multiple sclerosis lesions from 17 independent multiple sclerosis patients. We evaluated the standardized uptake value ratio as well as the morphometry of the TSPO uptake for putative PML and multiple sclerosis lesions areas compared to a radiologically unaffected pseudo-reference region in the cerebrum. Furthermore, TSPO expression in situ was immunohistochemically verified by determining the density and cellular identity of TSPO-expressing cells in brain sections from four patients with early natalizumab-associated PML as well as five patients with other forms of PML and six patients with inflammatory demyelinating CNS lesions (clinically isolated syndrome/multiple sclerosis). Histological analysis revealed a reticular accumulation of TSPO expressing phagocytes in PML lesions, while such phagocytes showed a more homogeneous distribution in putative multiple sclerosis lesions. TSPO PET imaging showed an enhanced tracer uptake in natalizumab-associated PML lesions that was present from the early to the chronic stages (up to 52 months after PML diagnosis). While gadolinium enhancement on MRI rapidly declined to baseline levels, TSPO tracer uptake followed a slow one phase decay curve. A TSPO-based 3D diagnostic matrix taking into account the uptake levels as well as the shape and texture of the TSPO signal differentiated >96% of PML and multiple sclerosis lesions. Indeed, treatment with rituximab after natalizumab-associated PML in three patients did not affect tracer uptake in the assigned PML lesions but reverted tracer uptake to baseline in the assigned active multiple sclerosis lesions. Taken together our study suggests that TSPO PET imaging can reveal CNS inflammation in natalizumab-associated PML. TSPO PET may facilitate longitudinal monitoring of disease activity and help to distinguish recurrent multiple sclerosis activity from PML progression.


Assuntos
Fatores Imunológicos/efeitos adversos , Leucoencefalopatia Multifocal Progressiva/induzido quimicamente , Leucoencefalopatia Multifocal Progressiva/metabolismo , Natalizumab/efeitos adversos , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA/metabolismo , Adulto , Meios de Contraste/metabolismo , Feminino , Radioisótopos de Flúor/metabolismo , Humanos , Indóis/metabolismo , Leucoencefalopatia Multifocal Progressiva/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos
19.
Nat Neurosci ; 24(3): 355-367, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33495636

RESUMO

Cortical pathology contributes to chronic cognitive impairment of patients suffering from the neuroinflammatory disease multiple sclerosis (MS). How such gray matter inflammation affects neuronal structure and function is not well understood. In the present study, we use functional and structural in vivo imaging in a mouse model of cortical MS to demonstrate that bouts of cortical inflammation disrupt cortical circuit activity coincident with a widespread, but transient, loss of dendritic spines. Spines destined for removal show local calcium accumulations and are subsequently removed by invading macrophages or activated microglia. Targeting phagocyte activation with a new antagonist of the colony-stimulating factor 1 receptor prevents cortical synapse loss. Overall, our study identifies synapse loss as a key pathological feature of inflammatory gray matter lesions that is amenable to immunomodulatory therapy.


Assuntos
Cálcio/metabolismo , Córtex Cerebral/metabolismo , Inflamação/metabolismo , Esclerose Múltipla/metabolismo , Fagócitos/metabolismo , Sinapses/metabolismo , Animais , Córtex Cerebral/patologia , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Modelos Animais de Doenças , Substância Cinzenta/metabolismo , Substância Cinzenta/patologia , Inflamação/patologia , Camundongos , Microglia/metabolismo , Esclerose Múltipla/patologia , Neurônios/metabolismo , Neurônios/patologia , Sinapses/patologia
20.
STAR Protoc ; 1(3): 100232, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33377119

RESUMO

Here, we describe a detailed workflow for ATUM-FIB microscopy, a hybrid method that combines serial-sectioning scanning electron microscopy (SEM) with focused ion beam SEM (FIB-SEM). This detailed protocol is optimized for mouse cortex samples. The main processing steps include the generation of semi-thick sections from sequentially cured resin blocks using a heated microtomy approach. We demonstrate the different imaging modalities, including serial light and electron microscopy for target recognition and FIB-SEM for isotropic imaging of regions of interest. For complete details on the use and execution of this protocol, please refer to Kislinger et al. (2020).


Assuntos
Córtex Cerebral/diagnóstico por imagem , Microscopia Eletrônica de Varredura/métodos , Microtomia/métodos , Animais , Córtex Cerebral/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Camundongos , Microtomia/instrumentação , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA