RESUMO
Liraglutide and other agonists of the glucagon-like peptide 1 receptor (GLP-1RAs) are effective weight loss drugs, but how they suppress appetite remains unclear. GLP-1RAs inhibit hunger-promoting Agouti-related peptide (AgRP) neurons of the arcuate hypothalamus (Arc) but only indirectly, implicating synaptic afferents to AgRP neurons. To investigate, we developed a method combining rabies-based connectomics with single-nuclei transcriptomics. Applying this method to AgRP neurons in mice predicts 21 afferent subtypes in the mediobasal and paraventricular hypothalamus. Among these are Trh+ Arc neurons (TrhArc), which express the Glp1r gene and are activated by the GLP-1RA liraglutide. Activating TrhArc neurons inhibits AgRP neurons and decreases feeding in an AgRP neuron-dependent manner. Silencing TrhArc neurons increases feeding and body weight and reduces liraglutide's satiating effects. Our results thus demonstrate a widely applicable method for molecular connectomics, reveal the molecular organization of AgRP neuron afferents, and shed light on a neurocircuit through which GLP-1RAs suppress appetite.
RESUMO
The hypothalamic neuropeptide oxytocin (OT) exerts prominent analgesic effects via central and peripheral action. However, the precise analgesic pathways recruited by OT are largely elusive. Here we discovered a subset of OT neurons whose projections preferentially terminate on OT receptor (OTR)-expressing neurons in the ventrolateral periaqueductal gray (vlPAG). Using a newly generated line of transgenic rats (OTR-IRES-Cre), we determined that most of the vlPAG OTR expressing cells targeted by OT projections are GABAergic. Ex vivo stimulation of parvocellular OT axons in the vlPAG induced local OT release, as measured with OT sensor GRAB. In vivo, optogenetically-evoked axonal OT release in the vlPAG of as well as chemogenetic activation of OTR vlPAG neurons resulted in a long-lasting increase of vlPAG neuronal activity. This lead to an indirect suppression of sensory neuron activity in the spinal cord and strong analgesia in both female and male rats. Altogether, we describe an OT-vlPAG-spinal cord circuit that is critical for analgesia in both inflammatory and neuropathic pain models.
Assuntos
Neuralgia , Ocitocina , Ratos , Masculino , Feminino , Animais , Ocitocina/metabolismo , Substância Cinzenta Periaquedutal/fisiologia , Neurônios/metabolismo , Analgésicos/farmacologia , Neuralgia/metabolismoRESUMO
Here, we present a step-by-step protocol to target, record, and manipulate the activity of oxytocin neurons in awake rats. The protocol includes a procedure to record the activity of oxytocin neurons from awake and socially interacting rats using opto-electrodes for simultaneous electrophysiological recording and virally based cell-type-specific opto-tagging with Channelrhodopsin 2. Furthermore, we illustrate a procedure for optically guided implantation of optic fiber and imaging of oxytocin neuron population activity expressing calcium indicator GCaMP6s with the fiber photometry technique. For complete details on the use and execution of this protocol, please refer to Tang et al., 2020.
Assuntos
Neurônios , Ocitocina , Animais , Eletrodos , Tecnologia de Fibra Óptica/métodos , Neurônios/fisiologia , Fotometria/métodos , RatosRESUMO
Oxytocin (OT) orchestrates social and emotional behaviors through modulation of neural circuits. In the central amygdala, the release of OT modulates inhibitory circuits and, thereby, suppresses fear responses and decreases anxiety levels. Using astrocyte-specific gain and loss of function and pharmacological approaches, we demonstrate that a morphologically distinct subpopulation of astrocytes expresses OT receptors and mediates anxiolytic and positive reinforcement effects of OT in the central amygdala of mice and rats. The involvement of astrocytes in OT signaling challenges the long-held dogma that OT acts exclusively on neurons and highlights astrocytes as essential components for modulation of emotional states under normal and chronic pain conditions.
Assuntos
Astrócitos/metabolismo , Núcleo Central da Amígdala/metabolismo , Emoções/fisiologia , Neurônios/metabolismo , Ocitocina/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Núcleo Central da Amígdala/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ocitocina/farmacologia , Ratos , Ratos Wistar , Receptores de Ocitocina/metabolismoRESUMO
Oxytocin possesses several physiological and social functions, among which an important analgesic effect. For this purpose, oxytocin binds mainly to its unique receptor, both in the central nervous system and in the peripheral nociceptive terminal axon in the skin. However, despite its interesting analgesic properties and its current use in clinics to facilitate labor, oxytocin is not used in pain treatment. Indeed, it is rapidly metabolized, with a half-life in the blood circulation estimated at five minutes and in cerebrospinal fluid around twenty minutes in humans and rats. Moreover, oxytocin itself suffers from several additional drawbacks: a lack of specificity, an extremely poor oral absorption and distribution, and finally, a lack of patentability. Recently, a first non-peptide full agonist of oxytocin receptor (LIT-001) of low molecular weight has been synthesized with reported beneficial effect for social interactions after peripheral administration. In the present study, we report that a single intraperitoneal administration of LIT-001 in a rat model induces a long-lasting reduction in inflammatory pain-induced hyperalgesia symptoms, paving the way to an original drug development strategy for pain treatment.
Assuntos
Inflamação/tratamento farmacológico , Dor/tratamento farmacológico , Peptídeos/uso terapêutico , Receptores de Ocitocina/agonistas , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Adjuvante de Freund , Masculino , Dor/patologia , Peptídeos/farmacologia , Ratos Wistar , Tela Subcutânea/patologia , Fatores de Tempo , Distribuição Tecidual/efeitos dos fármacosRESUMO
Oxytocin (OT) release by axonal terminals onto the central nucleus of the amygdala exerts anxiolysis. To investigate which subpopulation of OT neurons contributes to this effect, we developed a novel method: virus-delivered genetic activity-induced tagging of cell ensembles (vGATE). With the vGATE method, we identified and permanently tagged a small subpopulation of OT cells, which, by optogenetic stimulation, strongly attenuated contextual fear-induced freezing, and pharmacogenetic silencing of tagged OT neurons impaired context-specific fear extinction, demonstrating that the tagged OT neurons are sufficient and necessary, respectively, to control contextual fear. Intriguingly, OT cell terminals of fear-experienced rats displayed enhanced glutamate release in the amygdala. Furthermore, rats exposed to another round of fear conditioning displayed 5-fold more activated magnocellular OT neurons in a novel environment than a familiar one, possibly for a generalized fear response. Thus, our results provide first evidence that hypothalamic OT neurons represent a fear memory engram.