Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(14): e2206848, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36950732

RESUMO

Natural polymer-based and self-powered bioelectronic devices are attracting attention owing to an increased interest in human health monitoring and human-machine interfaces. However, obtaining both high efficiency and multifunctionality from a single natural polymer-based bioelectronics platform is still challenging. Here, molybdenum disulfide (MoS2 ) nanoparticle- and carbon quantum dot (CQDs)-incorporated deoxyribonucleic acid (DNA) nanocomposites are reported for energy harvesting, motion sensing, and charge storing. With nanomaterial-based electrodes, the MoS2 -CQD-DNA nanocomposite exhibits a high triboelectric open-circuit voltage of 1.6 kV (average) and an output power density of 275 mW cm-2 , which is sufficient for turning on hundred light-emitting diodes and for a highly sensitive motion sensing. Notably, the triboelectric performance can be tuned by external stimuli (light and thermal energy). Thermal and photon energy absorptions by the nanocomposite generate additional charges, resulting in an enhanced triboelectric performance. The MoS2 -CQD-DNA nanocomposite can also be applied as a capacitor material. Based on the obtained electronic properties, such as capacitances, dielectric constants, work functions, and bandgaps, it is possible that the charges generated by the MoS2 -CQD-DNA triboelectric nanogenerator can be stored in the MoS2 -CQD-DNA capacitor. A new way is presented here to expand the application area of self-powered devices in wearable and implantable electronics.


Assuntos
Nanocompostos , Nanopartículas , Humanos , Molibdênio , Nanotecnologia , Polímeros , DNA
2.
ACS Nano ; 14(6): 6548-6558, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32167289

RESUMO

Progressive Alzheimer's disease is correlated with the oligomerization and fibrillization of the amyloid beta (Aß) protein. We identify the fibrillization stage of the Aß protein through label-free near-field THz conductance measurements in a buffer solution. Frequency-dependent conductance was obtained by measuring the differential transmittance of the time-domain spectroscopy in the THz range with a molar concentration of monomer, oligomer, and fibrillar forms of the Aß protein. Conductance at the lower frequency limit was observed to be high in monomers, reduced in oligomers, and dropped to an insulating state in fibrils and increased proportionally with the Aß protein concentration. The monotonic decrease in the conductance at low frequency was dominated by a simple Drude component in the monomer with concentration and nonlinear conductance behaviors in the oligomer and fibril. By extracting the structural localization parameter, a dimensionless constant, with the modified Drude-Smith model, we defined a dementia quotient (DQ) value (0 < De < 1) as a discrete metric for a various Aß proteins at a low concentration of 0.1 µmol/L; DQ = 1.0 ± 0.002 (fibril by full localization, mainly by Smith component), DQ = 0.64 ± 0.013 (oligomer by intermixed localization), and DQ = 0.0 ± 0.000 (monomer by Drude component). DQ values were discretely preserved independent of the molar concentration or buffer variation. This provides plenty of room for the label-free diagnosis of Alzheimer's disease using the near-field THz conductance measurement.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/diagnóstico , Humanos
3.
Nanotechnology ; 31(8): 085705, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31675737

RESUMO

Deoxyribonucleic acid (DNA) doped with transition metal ions shows great versatility for molecular-based biosensors and bioelectronics. Methodologies for developing DNA lattices (formed by synthetic double-crossover tiles) and DNA layers (used by natural salmon) doped with vanadium ions (V3+), as well as an understanding of the physical characteristics of V3+-doped DNA nanostructures, are essential in practical applications in interdisciplinary research fields. Here, DNA lattices and layers doped with V3+ are constructed through substrate-assisted growth and drop-casting methods. In addition, enhanced physical characteristics such as the band gap energy, work function, dielectric constant, and susceptibility of V3+-doped DNA nanostructures with varying V3+ concentration ([V 3+ ]) are investigated. The critical concentration ([V 3+ ]C ) at a given amount of DNA was predicted based on an analysis of the phase transition of DNA lattices from crystalline to amorphous with specific [V 3+ ]. Generally, the [V 3+ ]C provided crucial information on the structural stability and extremum physical characteristics of V3+-doped DNA nanostructures due to the optimum incorporation of V3+ into DNA. We obtained the optical absorption spectra for energy band gap estimation; Raman spectra for identifying the preferential coordination sites of V3+ in DNA; x-ray photoelectron spectra to examine the chemical state, chemical composition, and functional groups; and ultraviolet photoelectron spectra to estimate the work function. In addition, we addressed the electrical properties (i.e. current, capacitance, dielectric constant, and storage energy) and magnetic properties (magnetic field-dependent and temperature-dependent magnetizations and susceptibility) of DNA layers in the presence of V3+. The development of biocompatible materials with specific optical, electrical, and magnetic properties is required for future applications because they must have designated functionality, high efficiency, and affordability.

4.
ACS Omega ; 4(4): 6530-6537, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31459784

RESUMO

Researchers have begun to use DNA molecules as an efficient template for arrangement of multiple functionalized nanomaterials for specific target applications. In this research, we demonstrated a simple process to co-dope synthetic DNA nanostructures (by a substrate-assisted growth method) and natural salmon DNA thin films (by a drop-casting method) with divalent metal ions (M2+, e.g., Co2+ and Cu2+) and trivalent lanthanide ions (Ln3+, e.g., Tb3+ and Eu3+). To identify the relationship among the DNA and dopant ions, DNA nanostructures were constructed while varying the Ln3+ concentration ([Ln3+]) at a fixed [M2+] with ion combinations of Co2+-Tb3+, Co2+-Eu3+, Cu2+-Tb3+, and Cu2+-Eu3+. Accordingly, we were able to estimate the critical [Ln3+] (named the optimum [Ln3+], [Ln3+]O) at a given [M2+] in the DNA nanostructures that corresponds to the phase change of the DNA nanostructures from crystalline to amorphous. The phase of the DNA nanostructures stayed crystalline up to [Tb3+]O ≡ 0.4 mM and [Eu3+]O ≡ 0.4 mM for Co2+ ([Tb3+]O ≡ 0.6 mM and [Eu3+]O ≡ 0.6 mM for Cu2+) and then changed to amorphous above 0.4 mM (0.6 mM). Consequently, phase diagrams of the four combinations of dopant ion pairs were created by analyzing the DNA lattice phases at given [M2+] and [Ln3+]. Interestingly, we observed extrema values of the measured physical quantities of DNA thin films near [Ln3+]O, where the maximum current, photoluminescence peak intensity, and minimum absorbance were obtained. M2+- and Ln3+-multidoped DNA nanostructures and DNA thin films may be utilized in the development of useful optoelectronic devices or sensors because of enhancement and contribution of multiple functionalities provided by M2+ and Ln3+.

5.
Nanotechnology ; 30(24): 245704, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-30812021

RESUMO

Thin films made of deoxyribonucleic acid (DNA), dissolved in an aqueous solution, and cetyltrimethyl-ammonium-modified DNA (CDNA), dissolved in an organic solvent, utilising multiwall carbon nanotubes (MWCNTs) are not yet well-understood for use in optoelectronic device and sensor applications. In this study, we fabricate MWCNT-integrated DNA and CDNA thin films using the drop-casting method. We also characterise the optical properties (i.e. absorption spectra, Fourier-transform infrared spectra, Raman spectra, photoluminescence, and time-of-flight secondary ion mass spectrometry) to study spectral absorption, interaction, functional group, chirality, and compositional moiety and its distribution of MWCNTs in DNA and CDNA thin films. The electrical property for conductance and the mechanical characterisations of hardness, modulus and elasticity for stability are also discussed. Lastly, to show the feasibility of directional alignment of MWCNTs in DNA thin films, we perform an alignment experiment with MWCNTs in DNA via brushing and shearing methods, and we evaluate the results using polarised optical microscopy. Our simple methodology to align ingredients in DNA and CDNA thin films leveraging various optical, electrical and mechanical properties, provides great potential for the development of efficient devices and sensors.


Assuntos
Cetrimônio/química , DNA/química , Nanotubos de Carbono/química , Fenômenos Eletromagnéticos , Fenômenos Mecânicos , Análise Espectral
6.
Nanotechnology ; 29(46): 465703, 2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30168799

RESUMO

Recently, DNA molecules embedded with magnetite (Fe3O4) nanoparticles (MNPs) drew much attention for their wide range of potential usage. With specific intrinsic properties such as low optical loss, high transparency, large band gap, high dielectric constant, potential for molecular recognition, and their biodegradable nature, the DNA molecule can serve as an effective template or scaffold for various functionalized nanomaterials. With the aid of cetyltrimethylammonium (CTMA) surfactant, DNA can be used in organic-based applications as well as water-based ones. Here, DNA and CTMA-DNA thin films with various concentrations of MNPs fabricated by the drop-casting method have been characterized by optical absorption, refractive index, Raman, and cathodoluminescence measurements to understand the binding, dispersion, chemical identification/functional modes, and energy transfer mechanisms, respectively. In addition, magnetization was measured as a function of either applied magnetic field or temperature in field cooling and zero field cooling. Saturation magnetization and blocking temperature demonstrate the importance of MNPs in DNA and CTMA-DNA thin films. Finally, we examine the thermal stabilities of MNP-embedded DNA and CTMA-DNA thin films through thermogravimetric analysis, derivative thermogravimetry, and differential thermal analysis. The unique optical, magnetic, and thermal characteristics of MNP-embedded DNA and CTMA-DNA thin films will prove important to fields such as spintronics, biomedicine, and function-embedded sensors and devices.


Assuntos
Compostos de Cetrimônio/química , DNA/química , Nanopartículas de Magnetita/química , Cetrimônio , Medições Luminescentes , Campos Magnéticos , Nanopartículas de Magnetita/análise , Gases em Plasma/química , Refratometria , Espectrofotometria Ultravioleta , Análise Espectral Raman , Temperatura , Termogravimetria
7.
Colloids Surf B Biointerfaces ; 167: 197-205, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29655046

RESUMO

DNA is one of the most propitious biomaterials for use in nanoscience and nanotechnology because of its exceptional characteristics, i.e. self-assembly and sequence-programmability. In this study, we fabricate sequence-designed double-crossover (DX) DNA lattices and naturally available salmon DNA (SDNA) thin films modified with the transition metal ion Mn2+. Phase transition of DX DNA lattices from crystalline to amorphous form controlled by varying the concentration of Mn2+ is discussed and a critical transition concentration ([Mn2+]C) is estimated. In addition, the electrical, optical, and magnetic properties of Mn2+-modified SDNA thin films including current, absorbance, photoluminescence, the X-ray photoelectron spectrum, and magnetization are studied to understand their conductivity, binding modes, energy transfer characteristics, chemical composition, and magnetism. Interestingly, the physical values such as the maximum current and photoluminescence, and the minimum absorbance, occur at around [Mn2+]C =4 mM, which may be due to the optimal incorporation of Mn2+ into the SDNA. The magnetization and susceptibility of SDNA thin films with Mn2+, served as magnetic dipoles, are studied under different temperature and magnetic field. The magnetization of SDNA thin films with [Mn2+]C shows an S-shaped curve, indicating ferromagnetism.


Assuntos
DNA/química , Manganês/química , Eletricidade , Campos Magnéticos , Rotação Ocular , Tamanho da Partícula , Propriedades de Superfície
8.
Sci Rep ; 7(1): 11567, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28912561

RESUMO

To be useful in optoelectronic devices and sensors, a platform comprising stable fluorescence materials is essential. Here we constructed quantum dots (QDs) embedded DNA thin films which aims for stable fluorescence through the stabilization of QDs in the high aspect ratio salmon DNA (SDNA) matrix. Also for maximum luminescence, different concentration and configurations of core- and core/alloy/shell-type QDs were embedded within SDNA. The QD-SDNA thin films were constructed by drop-casting and investigated their optoelectronic properties. The infrared, UV-visible and photoluminescence (PL) spectroscopies confirm the embedment of QDs in the SDNA matrix. Absolute PL quantum yield of the QD-SDNA thin film shows the ~70% boost due to SDNA matrix compared to QDs alone in aqueous phase. The linear increase of PL photon counts from few to order of 5 while increasing [QD] reveals the non-aggregation of QDs within SDNA matrix. These systematic studies on the QD structure, absorbance, and concentration- and thickness-dependent optoelectronic characteristics demonstrate the novel properties of the QD-SDNA thin film. Consequently, the SDNA thin films were suggested to utilize for the generalised optical environments, which has the potential as a matrix for light conversion and harvesting nano-bio material as well as for super resolution bioimaging- and biophotonics-based sensors.


Assuntos
DNA/química , Pontos Quânticos , Medições Luminescentes/métodos , Análise Espectral/métodos
9.
Nanotechnology ; 28(40): 405702, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-28829333

RESUMO

We fabricated synthetic double-crossover (DX) DNA lattices and natural salmon DNA (SDNA) thin films, doped with 3 combinations of double divalent metal ions (M2+)-doped groups (Co2+-Ni2+, Cu2+-Co2+, and Cu2+-Ni2+) and single combination of a triple M2+-doped group (Cu2+-Ni2+-Co2+) at various concentrations of M2+ ([M2+]). We evaluated the optimum concentration of M2+ ([M2+]O) (the phase of M2+-doped DX DNA lattices changed from crystalline (up to ([M2+]O) to amorphous (above [M2+]O)) and measured the current, absorbance, and photoluminescent characteristics of multiple M2+-doped SDNA thin films. Phase transitions (visualized in phase diagrams theoretically as well as experimentally) from crystalline to amorphous for double (Co2+-Ni2+, Cu2+-Co2+, and Cu2+-Ni2+) and triple (Cu2+-Ni2+-Co2+) dopings occurred between 0.8 mM and 1.0 mM of Ni2+ at a fixed 0.5 mM of Co2+, between 0.6 mM and 0.8 mM of Co2+ at a fixed 3.0 mM of Cu2+, between 0.6 mM and 0.8 mM of Ni2+ at a fixed 3.0 mM of Cu2+, and between 0.6 mM and 0.8 mM of Co2+ at fixed 2.0 mM of Cu2+ and 0.8 mM of Ni2+, respectively. The overall behavior of the current and photoluminescence showed increments as increasing [M2+] up to [M2+]O, then decrements with further increasing [M2+]. On the other hand, absorbance at 260 nm showed the opposite behavior. Multiple M2+-doped DNA thin films can be used in specific devices and sensors with enhanced optoelectric characteristics and tunable multi-functionalities.


Assuntos
Técnicas Biossensoriais , Cobalto/química , Cobre/química , DNA/química , Nanotecnologia/métodos , Níquel/química , Animais , Cátions Bivalentes , Medições Luminescentes , Membranas Artificiais , Nanotecnologia/instrumentação , Transição de Fase , Salmão
10.
ACS Appl Mater Interfaces ; 8(22): 14109-17, 2016 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-27166922

RESUMO

Double and triple lanthanide ion (Ln(3+))-doped synthetic double crossover (DX) DNA lattices and natural salmon DNA (SDNA) thin films are fabricated by the substrate assisted growth and drop-casting methods on given substrates. We employed three combinations of double Ln(3+)-dopant pairs (Tb(3+)-Tm(3+), Tb(3+)-Eu(3+), and Tm(3+)-Eu(3+)) and a triple Ln(3+)-dopant pair (Tb(3+)-Tm(3+)-Eu(3+)) with different types of Ln(3+), (i.e., Tb(3+) chosen for green emission, Tm(3+) for blue, and Eu(3+) for red), as well as various concentrations of Ln(3+) for enhancement of specific functionalities. We estimate the optimum concentration of Ln(3+) ([Ln(3+)]O) wherein the phase transition of Ln(3+)-doped DX DNA lattices occurs from crystalline to amorphous. The phase change of DX DNA lattices at [Ln(3+)]O and a phase diagram controlled by combinations of [Ln(3+)] were verified by atomic force microscope measurement. We also developed a theoretical method to obtain a phase diagram by identifying a simple relationship between [Ln(3+)] and [Ln(3+)]O that in practice was found to be in agreement with experimental results. Finally, we address significance of physical characteristics-current for evaluating [Ln(3+)]O, absorption for understanding the modes of Ln(3+) binding, and photoluminescence for studying energy transfer mechanisms-of double and triple Ln(3+)-doped SDNA thin films. Current and photoluminescence in the visible region increased as the varying [Ln(3+)] increased up to a certain [Ln(3+)]O, then decreased with further increases in [Ln(3+)]. In contrast, the absorbance peak intensity at 260 nm showed the opposite trend, as compared with current and photoluminescence behaviors as a function of varying [Ln(3+)]. A DNA thin film with varying combinations of [Ln(3+)] might provide immense potential for the development of efficient devices or sensors with increasingly complex functionality.


Assuntos
DNA/química , Elementos da Série dos Lantanídeos/química , Fenômenos Eletromagnéticos , Transferência de Energia , Transição de Fase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA