Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Sensors (Basel) ; 23(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37896744

RESUMO

With a rising emphasis on public safety and quality of life, there is an urgent need to ensure optimal air quality, both indoors and outdoors. Detecting toxic gaseous compounds plays a pivotal role in shaping our sustainable future. This review aims to elucidate the advancements in smart wearable (nano)sensors for monitoring harmful gaseous pollutants, such as ammonia (NH3), nitric oxide (NO), nitrous oxide (N2O), nitrogen dioxide (NO2), carbon monoxide (CO), carbon dioxide (CO2), hydrogen sulfide (H2S), sulfur dioxide (SO2), ozone (O3), hydrocarbons (CxHy), and hydrogen fluoride (HF). Differentiating this review from its predecessors, we shed light on the challenges faced in enhancing sensor performance and offer a deep dive into the evolution of sensing materials, wearable substrates, electrodes, and types of sensors. Noteworthy materials for robust detection systems encompass 2D nanostructures, carbon nanomaterials, conducting polymers, nanohybrids, and metal oxide semiconductors. A dedicated section dissects the significance of circuit integration, miniaturization, real-time sensing, repeatability, reusability, power efficiency, gas-sensitive material deposition, selectivity, sensitivity, stability, and response/recovery time, pinpointing gaps in the current knowledge and offering avenues for further research. To conclude, we provide insights and suggestions for the prospective trajectory of smart wearable nanosensors in addressing the extant challenges.

2.
J Biomed Opt ; 28(7): 075003, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37469830

RESUMO

Significance: Plasmo-thermo-electrophoresis (PTEP) involves using plasmonic microstructures to generate both a large-scale convection current and a near-field attraction force (thermo-electrophoresis). These effects facilitate the collective locomotion (i.e., swarming) of microscale particles in suspension, which can be utilized for numerous applications, such as particle/cell manipulation and targeted drug delivery. However, to date, PTEP for ensemble manipulation has not been well characterized, meaning its potential is yet to be realized. Aim: Our study aims to provide a characterization of PTEP on the motion and swarming effect of various particles and bacterial cells to allow rational design for bacteria-based microrobots and drug delivery applications. Approach: Plasmonic optical fibers (POFs) were fabricated using two-photon polymerization. The particle motion and swarming behavior near the tips of optical fibers were characterized by image-based particle tracking and analyzing the spatiotemporal concentration variation. These results were further correlated with the shape and surface charge of the particles defined by the zeta potential. Results: The PTEP demonstrated a drag force ranging from a few hundred fN to a few tens of pN using the POFs. Furthermore, bacteria with the greater (negative) zeta potential (|ζ|>10 mV) and smoother shape (e.g., Klebsiella pneumoniae and Escherichia coli) exhibited the greatest swarming behavior. Conclusions: The characterization of PTEP-based bacteria swarming behavior investigated in our study can help predict the expected swarming behavior of given particles/bacterial cells. As such, this may aid in realizing the potential of PTEP in the wide-ranging applications highlighted above.


Assuntos
Iluminação , Fibras Ópticas , Movimento (Física) , Bactérias , Escherichia coli
4.
J Clin Med ; 11(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36079042

RESUMO

Dermoscopy is the visual examination of the skin under a polarized or non-polarized light source. By using dermoscopic equipment, many lesion patterns that are invisible under visible light can be clearly distinguished. Thus, more accurate decisions can be made regarding the treatment of skin lesions. The use of images collected from a dermoscope has both increased the performance of human examiners and allowed the development of deep learning models. The availability of large-scale dermoscopic datasets has allowed the development of deep learning models that can classify skin lesions with high accuracy. However, most dermoscopic datasets contain images that were collected from digital dermoscopic devices, as these devices are frequently used for clinical examination. However, dermatologists also often use non-digital hand-held (optomechanical) dermoscopes. This study presents a dataset consisting of dermoscopic images taken using a mobile phone-attached hand-held dermoscope. Four deep learning models based on the MobileNetV1, MobileNetV2, NASNetMobile, and Xception architectures have been developed to classify eight different lesion types using this dataset. The number of images in the dataset was increased with different data augmentation methods. The models were initialized with weights that were pre-trained on the ImageNet dataset, and then they were further fine-tuned using the presented dataset. The most successful models on the unseen test data, MobileNetV2 and Xception, had performances of 89.18% and 89.64%. The results were evaluated with the 5-fold cross-validation method and compared. Our method allows for automated examination of dermoscopic images taken with mobile phone-attached hand-held dermoscopes.

5.
ACS Appl Polym Mater ; 4(8): 5457-5470, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35991303

RESUMO

Herein, we present the first example of 3D printing with poly(octamethylene maleate (anhydride) citrate) (POMaC), a bio-adhesive material which has shown particular promise for implantable biomedical devices. The current methods to fabricate such devices made from POMaC are hindered by the imposed constraints of designing complex molds. We demonstrate the feasibility of exploiting additive manufacturing to 3D print structural functional materials consisting of POMaC. We present 3D printing of biomaterial copolymers consisting of mixtures of poly(ethylene glycol) diacrylate (PEGDA) and POMaC at different ratios. The required parameters were optimized, and characterization of the printing fidelity and physical properties was performed. We have also demonstrated that a range of mechanical properties can be achieved by tuning the POMaC/PEGDA ratio. The biocompatibility of the copolymers was ascertained via a cell viability assay. Such tunable 3D printed biomaterials consisting of POMaC and PEGDA will have significant potential application in the development of functional biomaterial tissue scaffolds and biomedical devices for the future of personalized medicine.

6.
Materials (Basel) ; 13(16)2020 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-32784877

RESUMO

Biomedical waste management is getting significant consideration among treatment technologies, since insufficient management can cause danger to medicinal service specialists, patients, and their environmental conditions. The improvement of waste administration protocols, plans, and policies are surveyed, despite setting up training programs on legitimate waste administration for all healthcare service staff. Most biomedical waste substances do not degrade in the environment, and may also not be thoroughly removed through treatment processes. Therefore, the long-lasting persistence of biomedical waste can effectively have adverse impact on wildlife and human beings, as well. Hence, photocatalysis is gaining increasing attention for eradication of pollutants and for improving the safety and clearness of the environment due to its great potential as a green and eco-friendly process. In this regard, nanostructured photocatalysts, in contrast to their regular counterparts, exhibit significant attributes such as non-toxicity, low cost and higher absorption efficiency in a wider range of the solar spectrum, making them the best candidate to employ for photodegradation. Due to these unique properties of nanophotocatalysts for biomedical waste management, we aim to critically evaluate various aspects of these materials in the present review and highlight their importance in healthcare service settings.

7.
Biomed Mater ; 15(5): 055011, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32330920

RESUMO

To achieve regeneration of long sections of damaged nerves, restoration methods such as direct suturing or autologous grafting can be inefficient. Solutions involving biohybrid implants, where neural stem cells are grown in vitro on an active support before implantation, have attracted attention. Using such an approach, combined with recent advancements in microfabrication technology, the chemical and physical environment of cells can be tailored in order to control their behaviors. Herein, a neural stem cell polycarbonate fiber scaffold, fabricated by 3D printing and thermal drawing, is presented. The combined effect of surface microstructure and chemical functionalization using poly-L-ornithine (PLO) and double-walled carbon nanotubes (DWCNTs) on the biocompatibility of the scaffold, induced differentiation of the neural stem cells (NSCs) and channeling of the neural cells was investigated. Upon treatment of the fiber scaffold with a suspension of DWCNTs in PLO (0.039 g l-1) and without recombinants a high degree of differentiation of NSCs into neuronal cells was confirmed by using nestin, galactocerebroside and doublecortin immunoassays. These findings illuminate the potential use of this biohybrid approach for the realization of future nerve regenerative implants.


Assuntos
Regeneração Nervosa , Células-Tronco Neurais/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Materiais Biocompatíveis/química , Diferenciação Celular , Membrana Celular/metabolismo , Sobrevivência Celular , Células Cultivadas , Proteína Duplacortina , Fator 2 de Crescimento de Fibroblastos/metabolismo , Humanos , Imunoensaio , Nanotubos de Carbono/química , Nestina/química , Neurônios/citologia , Sistema Nervoso Periférico/patologia , Fenótipo , Impressão Tridimensional , Próteses e Implantes , Ratos , Propriedades de Superfície , Alicerces Teciduais/química
8.
ACS Appl Mater Interfaces ; 10(41): 34886-34904, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30239189

RESUMO

Accurate in vitro molecular-level analysis is an essential step prior to in vivo and clinical application for early diagnosis and cancer treatment. Among the diagnostic techniques, surface-enhanced Raman scattering (SERS) biosensing has shown growing potential due to its noninvasive and real-time characterization of the biomolecules. However, the application of SERS biosensing is mostly limited to the plasmonic noble metals, in the form of either nanoparticles or tips and substrates (fixed probe), on which surface plasmon resonance (SPR) is the prominent enhancement principle. The semiconductor quantum particles have been explored in several optoelectronics applications, but have never been reported to be exploited as a means of surface-enhanced Raman scattering (SERS) for molecular-level and intracellular sensing. Here, we report on the new generation of noble-metal-free SERS probe; Si@SiO2 quantum probe (Si@SiO2 Q-probe) whose affinity to functional groups not only imitates a self-driven labeling attribution that enables charge transfer (CT) as an augmented enhancement principle but also its mobile nature in miniaturized scale facilitates endocytosis for in situ live cell biosensing. Moreover, a significant enhancement factor of 106 of rhodamine 6G (R6G) and 107 of glutathione (GSH) at ∼5 × 10-12 pM concentration has been achieved that is comparable to inherently plasmonic noble metals. Our results showed a capability of the Si@SiO2 Q-probe to unveil the "biochemical fingerprint" of substantial components of mammalian and cancerous cervical cells, which leads to diagnosis of cervical cancer. These unique attributions of the Si@SiO2 Q-probe can provide better insight into cell mutation and malignancy.


Assuntos
Pontos Quânticos/química , Rodaminas , Semicondutores , Dióxido de Silício , Ressonância de Plasmônio de Superfície , Animais , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Rodaminas/química , Rodaminas/farmacologia , Dióxido de Silício/química , Dióxido de Silício/farmacologia
9.
Adv Sci (Weinh) ; 5(3): 1700548, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29593957

RESUMO

Herein, a label-free multiplex photoluminescent silicon nanoprobe (PLSN-probe) is introduced as a potential substitute for quantum dots (QDs) in bioimaging. An inherently non-photoluminescent silicon substrate is altered to create the PLSN-probe, to overcome the major drawbacks of presently available QDs. Additionally, crystallinity alterations of the multiplane crystalline PLSN-probes lead to broad absorption and multiplex fluorescence emissions, which are attributed to the simultaneous existence of multiple crystal planes. The PLSN-probe not only demonstrates unique optical properties that can be exploited for bioimaging but also exhibits cell-selective uptake that allows the differentiation and diagnosis of HeLa and fibroblast cells. Moreover, multiplex emissions of the PLSN-probe illuminate different organelles such as the nucleus, nucleolemma, and cytoskeleton, depending on size-based preferential uptake by the cell organs. This in vitro study reveals that cancerous HeLa cells have a higher propensity for taking up the PLSN-probe compared to fibroblast cells, allowing the diagnosis of cancerous HeLa cells. Additionally, the fluorescence intensity per unit area of the cell is found to be a reliable means for distinguishing between dead and healthy cells. It is anticipated that the multifunctionality of the PLSN-probes will lead to better insight into the use of such probes for bioimaging and diagnosis applications.

10.
ACS Appl Mater Interfaces ; 9(7): 6292-6305, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28106378

RESUMO

The biocompatibility of silicon-based nanomaterials makes them suitable for biophysical and biomedical applications. However, the application of silicon-based nanomaterials has been mainly restricted to nanoparticles (NPs) as a potential drug carrier and the extracellular matrix (ECM) as a platform for cell adhesion and proliferation. Here, we introduce silica NPs self-assembled into a 3D nanoweb architecture that was shown to inherit the therapeutic and proliferative attributes of both NPs and ECMs. The self-assembled silica nanoweb (SNW) has, therefore, not only shown targeted druglike behavior in HeLa cells without the use of biomarkers but has also shown ECM characteristics. The ECM characteristics of SNWs enhanced the cellular attraction and proliferation by which fibroblasts exhibited tissuelike behavior, and HeLa cells underwent an intensified induction of apoptosis. These properties are tailored by the alteration of the polymorphic heterogeneities of the SNW as a novel nanobiointerface for exceptional apoptosis induction through the enhancement of cellular attraction, which, to the best of our knowledge, has not been previously reported. These attributes enable selective functionality with which cancerous HeLa and mammalian fibroblast cells were affected differently. Moreover, simultaneous control of the packing index and crystallinity of the SNWs, to which the cells had been attracted, possessed the additional advantage of modulating the selective functionality of this nanobiointerface. These polymorphic characteristics were tailored by the alteration of the crystallinity of the synthesized SNW via precision control of the ionization level of the silicon substrate, whose requisite ionization energy was generated by an ultrashort pulsed laser. Our results showed that the therapeutic functionality of the SNW-plated template can be elucidated via the endocytosis of amorphous SNWs. Because of the efficient cellular attraction and remarkable contrast in the cellular response to the SNW-plated template, we expect that these findings will provide new insights and opportunities for designing and engineering novel cell-material interfaces for advanced biomedical applications in cancer research.

11.
Sci Rep ; 6: 35425, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27759054

RESUMO

This in-vitro study introduces residual stress as a third dimension of cell stimulus to modulate the interaction between cells and bio-template, without the addition of either chemical or physical stimuli onto the bio-template surface. Ultrashort Pulsed Laser (USPL) irradiation of silicon-based bio-template causes recrystallization of silicon, which mismatches the original crystal orientation of the virgin silicon. Consequently, subsurface Induced Residual Stress (IRS) is generated. The IRS components demonstrated a strong cytocompatibility, whereas the peripheral of IRS, which is the interface between the IRS component and the virgin silicon surface, a significant directional cell alignment was observed. Fibroblast cells shown to be more sensitive to the stress component than Hela cancer cells. It revealed that cytocompatibility in terms of cell migration and directional cell alignment is directly proportional to the level of the IRS component. Higher stress level results in more cell alignment and border migration width. There is a stress threshold below which the stress component completely loses the functionality. These results pointed to a functionalized bio-template with tunable cytocompatibility. This study may lead to a new tool for the designing and engineering of bio-template.


Assuntos
Comunicação Celular , Fenômenos Fisiológicos Celulares , Células/citologia , Células/ultraestrutura , Estresse Fisiológico , Animais , Adesão Celular , Movimento Celular , Fenômenos Fisiológicos Celulares/efeitos da radiação , Células/efeitos da radiação , Células HeLa , Humanos , Lasers , Camundongos , Células NIH 3T3 , Estresse Fisiológico/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA