RESUMO
The polyphagous pest, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), damages fruit in orchards and field crops and is often found within nearby woodlands. Pheromone-baited traps can be used to monitor H. halys. However, the efficiency of trapping H. halys may vary depending on trapping strategy (live vs. dead capture), location (ground or canopy), and diel periodicity of captures. We compared H. halys capture within fruiting hosts for: (i) live and kill traps on the ground vs. traps in the canopy of black cherry (Prunus serotina Ehrh.) (Rosales: Rosaceae), sugarberry (Celtis laevigata Willdenow) (Rosales: Cannabaceae), and pecan (Carya illinoinensis (Wangenh.) K. Koch) (Fagales: Juglandaceae) trees, (ii) ground and canopy-live traps in sassafras (Sassafras albidum (Nutt.) Nees) (Laurales: Lauraceae), and (iii) whether diel periodicity was detected for live capture in sassafras and cotton. More H. halys adults and nymphs were captured in kill traps than in live traps. More nymphs were captured in kill traps in black cherry and sugarberry on the ground than in the canopy. Live adult capture was significantly greater in sassafras and pecan canopies than on the ground. In cotton and sassafras, more live adults were captured from 8 PM-noon, with the fewest captured from noon-6 PM. A better understanding of stink bug activity in the field allows for improved trapping and, possibly, improved timing of treatment applications.
Assuntos
Heterópteros , Controle de Insetos , Animais , Florestas , Árvores , Frutas , NinfaRESUMO
Stink bugs (Hemiptera: Pentatomidae), including the exotic Halyomorpha halys (Stål), Nezara viridula (L.), and other indigenous species, are pests that damage a variety of agricultural crops. At a study site in the southeastern United States, we measured the density of stink bug species and patterns of parasitism and predation on corn, cotton, and soybean and host trees in an adjacent woodline. We assessed parasitism and predation of naturally laid egg masses in crops and sentinel egg masses in host trees and used pheromone-baited traps to determine H. halys seasonal development. Overall, H. halys and N. viridula were the dominant bugs observed. Adult H. halys were first detected each year on trees, followed by corn, and then cotton and soybean, suggesting that trees served as a source of H. halys dispersing into crops. For H. halys, more nymphs were captured in soybean than in corn or cotton. For N. viridula, more adults were captured in corn and cotton than in soybean, and more nymphs were captured in corn during 2019 and 2021 than in 2020. Percentage parasitism of N. viridula egg masses (74.2%) was higher than than that for H. halys egg masses (54.3%). Accordingly, conservation biological control has the potential to enhance parasitism of indigenous stink bugs and H. halys in field crop agroecosystems.
RESUMO
Transgenic corn and cotton that produce Cry and Vip3Aa toxins derived from Bacillus thuringiensis (Bt) are widely planted in the United States to control lepidopteran pests. The sustainability of these Bt crops is threatened because the corn earworm/bollworm, Helicoverpa zea (Boddie), is evolving a resistance to these toxins. Using Bt sweet corn as a sentinel plant to monitor the evolution of resistance, collaborators established 146 trials in twenty-five states and five Canadian provinces during 2020-2022. The study evaluated overall changes in the phenotypic frequency of resistance (the ratio of larval densities in Bt ears relative to densities in non-Bt ears) in H. zea populations and the range of resistance allele frequencies for Cry1Ab and Vip3Aa. The results revealed a widespread resistance to Cry1Ab, Cry2Ab2, and Cry1A.105 Cry toxins, with higher numbers of larvae surviving in Bt ears than in non-Bt ears at many trial locations. Depending on assumptions about the inheritance of resistance, allele frequencies for Cry1Ab ranged from 0.465 (dominant resistance) to 0.995 (recessive resistance). Although Vip3Aa provided high control efficacy against H. zea, the results show a notable increase in ear damage and a number of surviving older larvae, particularly at southern locations. Assuming recessive resistance, the estimated resistance allele frequencies for Vip3Aa ranged from 0.115 in the Gulf states to 0.032 at more northern locations. These findings indicate that better resistance management practices are urgently needed to sustain efficacy the of corn and cotton that produce Vip3Aa.
RESUMO
Stink bugs, including Halyomorpha halys (Stål) and Nezara viridula (L.), are agricultural pests that feed on fruit in a variety of crops. Monitoring predation and parasitism of stink bug egg masses furthers our understanding of potential biological control tactics. However, best practices for laboratory and field assessments of parasitism and predation of egg masses require further attention. We carried out a series of laboratory and field experiments to test whether parasitism and predation for three types of sentinel H. halys egg masses, fresh, frozen, and refrigerated, varied in agricultural commodities. In addition, we asked if predation and parasitism differed between sentinel and naturally occurring H. halys and N. viridula egg masses in soybean. In the laboratory, more H. halys eggs were parasitized by Trissolcus euschisti (Ashmead) (Hymenoptera: Scelionidae) if they were frozen or refrigerated compared to fresh eggs. Similarly, in the field, parasitism was higher for frozen egg masses than fresh. In 2018 and 2019, H. halys natural egg masses had higher parasitism and lower predation compared to sentinel egg masses in soybean. In a paired field test during 2020 and 2021, there was no difference in parasitism between H. halys natural and sentinel eggs, but much higher incidence of parasitism was detected in natural N. viridula egg masses than sentinel eggs. Collecting natural egg masses is the best methodology for field assessment of parasitism of stink bug egg masses; however, if natural egg masses are not easily available, deploying refrigerated sentinel egg masses is a good alternative.