Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Tissue Bank ; 16(2): 219-26, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25037592

RESUMO

Allografts have gained increasing popularity in anterior cruciate ligament (ACL) reconstruction. However, one of the major concerns regarding allografts is the possibility of disease transmission. Electron beam (Ebeam) and Gamma radiation have been proven to be successful in sterilization of medical products. In soft tissue sterilization high dosages of gamma irradiation have been shown to be detrimental to biomechanical properties of grafts. Therefore, it was the objective of this study to compare the biomechanical properties of human bone-patellar tendon-bone (BPTB) grafts after ebeam with standard gamma irradiation at medium (25 kGy) and high doses (34 kGy). We hypothesized that the biomechanical properties of Ebeam irradiated grafts would be superior to gamma irradiated grafts. Paired 10 mm-wide human BPTB grafts were harvested from 20 donors split into four groups following irradiation with either gamma or Ebeam (each n = 10): (A) Ebeam 25 kGy, (B) Gamma 25 kGy, (C) Ebeam 34 kGy (D) Gamma 34 kGy and ten non-irradiated BPTB grafts were used as controls. All grafts underwent biomechanical testing which included preconditioning (ten cycles, 0-20 N); cyclic loading (200 cycles, 20-200 N) and a load-to-failure (LTF) test. Stiffness of non-irradiated controls (199.6 ± 59.1 N/mm) and Ebeam sterilized grafts did not significantly differ (152.0 ± 37.0 N/mm; 192.8 ± 58.0 N/mm), while Gamma-irradiated grafts had significantly lower stiffness than controls at both irradiation dosages (25 kGy: 126.1 ± 45.4 N/mm; 34 kGy: 170.6 ± 58.2 N/mm) (p < 0.05). Failure loads at 25 kGy were significantly lower in the gamma group (1,009 ± 400 N), while the failure load was significantly lower in both study groups at high dose irradiation with 34 kGy (Ebeam: 1,139 ± 445 N, Gamma: 1,073 ± 617 N) compared to controls (1,741 ± 304 N) (p < 0.05). Creep was significantly larger in the gamma irradiated groups (25 kGy: 0.96 ± 1.34 mm; 34 kGy: 1.06 ± 0.58 mm) than in the Ebeam (25 kGy: 0.50 ± 0.34 mm; 34 kGy: 0.26 ± 0.24 mm) and control (0.20 ± 0.18 mm) group that did not differ significantly. Strain difference was not different between either control or study groups (controls: 1.0 ± 0.03; Ebeam 34 kGy 1.04 ± 0.018; Gamma 34 kGy 1.0 ± 0.028; 25 kGy: 1.4 ± 2,0; 34 kGy: 1.1 ± 1.1). The most important result of this study was that ebeam irradiation showed significantly less impairment of the biomechanical properties than gamma irradiation. Considering the results of this study and the improved control of irradiation application with electronic beam, this technique might be a promising alternative in soft-tissue sterilization.


Assuntos
Reconstrução do Ligamento Cruzado Anterior , Enxerto Osso-Tendão Patelar-Osso , Elétrons , Raios gama , Ligamento Patelar/efeitos da radiação , Ligamento Cruzado Anterior/cirurgia , Reconstrução do Ligamento Cruzado Anterior/métodos , Humanos , Esterilização/métodos , Transplante Homólogo/métodos
2.
Knee Surg Sports Traumatol Arthrosc ; 19(11): 1955-61, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21541710

RESUMO

PURPOSE: Irradiation >30 kGy is required to achieve sterility against bacterial and viral pathogens in ACL allograft sterilization. However, doses >20 kGy substantially reduce the structural properties of soft-tissue grafts. Fractionation of irradiation doses is a standard procedure in oncology to reduce tissue damage but has not been applied in tissue graft sterilization. METHODS: Forty-four human 10-mm wide bone-patellar-tendon-bone grafts were randomized into four groups of sterilization with (1) 34 kGy of ebeam (2) 34 kGy gamma (3) 34 kGy fractionated ebeam, and (4) non sterilized controls. Graft´s biomechanical properties were evaluated at time zero. Biomechanical properties were analyzed during cyclic and load-to-failure testing. RESULTS: Fractionation of ebeam irradiation resulted in significantly higher failure loads (1,327 ± 305) than with one-time ebeam irradiation (1,024 ± 204; P = 0.008). Compared to gamma irradiation, significantly lower strain (2.9 ± 1.5 vs. 4.6 ± 2.0; P = 0.008) and smaller cyclic elongation response (0.3 ± 0.2 vs. 0.6 ± 0.4; P = 0.05), as well as higher failure loads (1,327 ± 305 vs. 827 ± 209; P = 0.001), were found. Compared to non-irradiated BPTB grafts, no significant differences were found for any of the biomechanical parameters. Non-irradiated controls had significantly lower cyclic elongation response and higher failure loads than ebeam and gamma irradiation. CONCLUSIONS: In this study, it was found that fractionation of high-dose electron beam irradiation facilitated a significant improvement of viscoelastic and structural properties of BPTB grafts compared to ebeam and gamma irradiation alone, while maintaining levels of non-irradiated controls. Therefore, this technique might pose an important alternative to common methods for sterilization of soft-tissue allografts.


Assuntos
Ligamento Cruzado Anterior/microbiologia , Ligamento Cruzado Anterior/efeitos da radiação , Enxerto Osso-Tendão Patelar-Osso , Adulto , Idoso , Fenômenos Biomecânicos , Transmissão de Doença Infecciosa/prevenção & controle , Fracionamento da Dose de Radiação , Elasticidade , Raios gama , Humanos , Pessoa de Meia-Idade , Doses de Radiação , Distribuição Aleatória , Esterilização/métodos , Transplante Homólogo , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA