RESUMO
Agriculture activity contributes to greenhouse gas (GHG) emissions through its utilization of land, water, and energy for food production. Hence, the interactions between land, water, and GHG emissions in agricultural production need to be comprehensively studied. The study aimed to assess the Land-Water-GHG-Food Nexus Index (LWGFNI) of rice cultivation across various land suitability classes in Central Thailand and determining the physical, socio-economic, and policy factors that can influence farmers' decisions to choose for cultivating rice instead of shifting to other crops. The results indicated that the highest LWGFNI score was 0.69 for the rice grown in the moderate suitability land class which revealed a lower use of land and water resources as well as GHG emissions compared to other levels of land suitability. The LWGFNI scores of major rice cultivation were greater compared to the second rice in all four-land suitability. The use of fertilizers had a crucial role in enhancing productivity levels and was a significant factor in the generation of GHG emissions. Hence, improving effective production should consider the appropriate use of fertilizer. The physical, socio-economic, and policy-related aspects that significantly influenced farmers' decisions on cultivation of rice included topography, water resources, inherited professions, price guarantee, and knowledge/training factors. The methodology used and results obtained can help policy makers to plan the use of water and land resources efficiently and appropriately with local resources based on land suitability class. The assessment results revealed the GHG hotspots and the strategies to mitigate GHG emissions associated with rice cultivation.