RESUMO
Respiratory syncytial virus (RSV) is an RNA virus infecting the upper and lower respiratory tract and is recognized as a major respiratory health threat, particularly to older adults, immunocompromised individuals, and young children. Around 64 million children and adults are infected every year worldwide. Despite two vaccines and a new generation monoclonal antibody recently approved, no effective antiviral treatment is available. In this manuscript, we present the medicinal chemistry efforts resulting in the identification of compound 28 (JNJ-8003), a novel RSV non-nucleoside inhibitor displaying subnanomolar activity in vitro as well as prominent efficacy in mice and a neonatal lamb models.
Assuntos
Antivirais , Piridinas , Animais , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Humanos , Camundongos , Piridinas/farmacologia , Piridinas/química , Piridinas/síntese química , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções por Vírus Respiratório Sincicial/virologia , Relação Estrutura-Atividade , Ovinos , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Vírus Sinciciais Respiratórios/efeitos dos fármacosRESUMO
Respiratory syncytial virus (RSV) is a major cause of hospitalization in infants, the elderly, and immune-compromised patients. While a half-life extended monoclonal antibody and 2 vaccines have recently been approved for infants and the elderly, respectively, options to prevent disease in immune-compromised patients are still needed. Here, we describe spiro-azetidine oxindoles as small molecule RSV entry inhibitors displaying favorable potency, developability attributes, and long-acting PK when injected as an aqueous suspension, suggesting their potential to prevent complications following RSV infection over a period of 3 to 6 months with 1 or 2 long-acting intramuscular (IM) or subcutaneous (SC) injections in these immune-compromised patients.
Assuntos
Antivirais , Azetidinas , Oxindóis , Infecções por Vírus Respiratório Sincicial , Compostos de Espiro , Humanos , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Animais , Oxindóis/química , Oxindóis/farmacologia , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Compostos de Espiro/farmacocinética , Compostos de Espiro/administração & dosagem , Antivirais/farmacologia , Antivirais/química , Antivirais/administração & dosagem , Azetidinas/química , Azetidinas/farmacologia , Azetidinas/administração & dosagem , Azetidinas/farmacocinética , Profilaxia Pré-Exposição/métodos , Injeções Intramusculares , Indóis/química , Indóis/administração & dosagem , Indóis/farmacologia , Injeções Subcutâneas , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacosRESUMO
Dengue is a global public health threat, with about half of the world's population at risk of contracting this mosquito-borne viral disease. Climate change, urbanization, and global travel accelerate the spread of dengue virus (DENV) to new areas, including southern parts of Europe and the US. Currently, no dengue-specific small-molecule antiviral for prophylaxis or treatment is available. Here, we report the discovery of JNJ-1802 as a potent, pan-serotype DENV inhibitor (EC50's ranging from 0.057 to 11 nM against the four DENV serotypes). The observed oral bioavailability of JNJ-1802 across preclinical species, its low clearance in human hepatocytes, the absence of major in vitro pharmacology safety alerts, and a dose-proportional increase in efficacy against DENV-2 infection in mice were all supportive of its selection as a development candidate against dengue. JNJ-1802 is being progressed in clinical studies for the prevention or treatment of dengue.
Assuntos
Vírus da Dengue , Dengue , Hidrocarbonetos Halogenados , Indóis , Camundongos , Humanos , Animais , Sorogrupo , Dengue/tratamento farmacológicoRESUMO
In the absence of any approved dengue-specific treatment, the discovery and development of a novel small-molecule antiviral for the prevention or treatment of dengue are critical. We previously reported the identification of a novel series of 3-acyl-indole derivatives as potent and pan-serotype dengue virus inhibitors. We herein describe our optimization efforts toward preclinical candidates 24a and 28a with improved pan-serotype coverage (EC50's against the four DENV serotypes ranging from 0.0011 to 0.24 µM for 24a and from 0.00060 to 0.084 µM for 28a), chiral stability, and oral bioavailability in preclinical species, as well as showing a dose-proportional increase in efficacy against DENV-2 infection in vivo in mice.
Assuntos
Vírus da Dengue , Dengue , Camundongos , Animais , Sorogrupo , Antivirais/farmacologia , Antivirais/uso terapêutico , Dengue/tratamento farmacológico , Indóis/farmacologia , Indóis/uso terapêuticoRESUMO
Dengue is a major health threat and the number of symptomatic infections caused by the four dengue serotypes is estimated to be 96 million1 with annually around 10,000 deaths2. However, no antiviral drugs are available for the treatment or prophylaxis of dengue. We recently described the interaction between non-structural proteins NS3 and NS4B as a promising target for the development of pan-serotype dengue virus (DENV) inhibitors3. Here we present JNJ-1802-a highly potent DENV inhibitor that blocks the NS3-NS4B interaction within the viral replication complex. JNJ-1802 exerts picomolar to low nanomolar in vitro antiviral activity, a high barrier to resistance and potent in vivo efficacy in mice against infection with any of the four DENV serotypes. Finally, we demonstrate that the small-molecule inhibitor JNJ-1802 is highly effective against viral infection with DENV-1 or DENV-2 in non-human primates. JNJ-1802 has successfully completed a phase I first-in-human clinical study in healthy volunteers and was found to be safe and well tolerated4. These findings support the further clinical development of JNJ-1802, a first-in-class antiviral agent against dengue, which is now progressing in clinical studies for the prevention and treatment of dengue.
Assuntos
Antivirais , Vírus da Dengue , Dengue , Primatas , Proteínas não Estruturais Virais , Animais , Humanos , Camundongos , Antivirais/efeitos adversos , Antivirais/farmacologia , Antivirais/uso terapêutico , Ensaios Clínicos Fase I como Assunto , Dengue/tratamento farmacológico , Dengue/prevenção & controle , Dengue/virologia , Vírus da Dengue/classificação , Vírus da Dengue/efeitos dos fármacos , Relação Dose-Resposta a Droga , Farmacorresistência Viral , Técnicas In Vitro , Terapia de Alvo Molecular , Primatas/virologia , Ligação Proteica/efeitos dos fármacos , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Replicação ViralRESUMO
While progress has been made in fighting diseases disproportionally affecting underserved populations, unmet medical needs persist for many neglected tropical diseases. The World Health Organization has encouraged strong public-private partnerships to address this issue and several public and private organizations have set an example in the past showing a strong commitment to combat these diseases. Pharmaceutical companies are contributing in different ways to address the imbalance in research efforts. With this review, we exemplify the role of a public-private partnership in research and development by the journey of our dengue antiviral molecule that is now in early clinical development. We detail the different steps of drug development and outline the contribution of each partner to this process. Years of intensive collaboration resulted in the identification of two antiviral compounds, JNJ-A07 and JNJ-1802, the latter of which has advanced to clinical development.
Assuntos
Dengue , Parcerias Público-Privadas , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Sorogrupo , Indústria Farmacêutica , Doenças Negligenciadas/tratamento farmacológico , Doenças Negligenciadas/prevenção & controle , Dengue/tratamento farmacológico , Dengue/prevenção & controleRESUMO
Dengue virus causes approximately 96 million symptomatic infections annually, manifesting as dengue fever or occasionally as severe dengue1,2. There are no antiviral agents available to prevent or treat dengue. Here, we describe a highly potent dengue virus inhibitor (JNJ-A07) that exerts nanomolar to picomolar activity against a panel of 21 clinical isolates that represent the natural genetic diversity of known genotypes and serotypes. The molecule has a high barrier to resistance and prevents the formation of the viral replication complex by blocking the interaction between two viral proteins (NS3 and NS4B), thus revealing a previously undescribed mechanism of antiviral action. JNJ-A07 has a favourable pharmacokinetic profile that results in outstanding efficacy against dengue virus infection in mouse infection models. Delaying start of treatment until peak viraemia results in a rapid and significant reduction in viral load. An analogue is currently in further development.
Assuntos
Antivirais/farmacologia , Vírus da Dengue/classificação , Vírus da Dengue/efeitos dos fármacos , Dengue/virologia , Proteínas de Membrana/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Antivirais/farmacocinética , Antivirais/uso terapêutico , Dengue/tratamento farmacológico , Vírus da Dengue/genética , Vírus da Dengue/metabolismo , Modelos Animais de Doenças , Feminino , Masculino , Proteínas de Membrana/antagonistas & inibidores , Camundongos , RNA Helicases/antagonistas & inibidores , RNA Helicases/metabolismo , Serina Endopeptidases/metabolismo , Carga Viral/efeitos dos fármacos , Proteínas não Estruturais Virais/antagonistas & inibidores , Viremia/tratamento farmacológico , Viremia/virologia , Replicação Viral/efeitos dos fármacosRESUMO
Influenza therapeutics with new targets and mechanisms of action are urgently needed to combat potential pandemics, emerging viruses, and constantly mutating strains in circulation. We report here on the design and structural characterization of potent peptidic inhibitors of influenza hemagglutinin. The peptide design was based on complementarity-determining region loops of human broadly neutralizing antibodies against the hemagglutinin (FI6v3 and CR9114). The optimized peptides exhibit nanomolar affinity and neutralization against influenza A group 1 viruses, including the 2009 H1N1 pandemic and avian H5N1 strains. The peptide inhibitors bind to the highly conserved stem epitope and block the low pH-induced conformational rearrangements associated with membrane fusion. These peptidic compounds and their advantageous biological properties should accelerate the development of new small molecule- and peptide-based therapeutics against influenza virus.
Assuntos
Antivirais/química , Desenho de Fármacos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Peptídeos Cíclicos/química , Internalização do Vírus/efeitos dos fármacos , Animais , Anticorpos Neutralizantes/química , Antivirais/farmacologia , Antivirais/uso terapêutico , Regiões Determinantes de Complementaridade/química , Cristalografia por Raios X , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/uso terapêutico , Conformação ProteicaRESUMO
A series of darunavir analogues featuring a substituted bis-THF ring as P2 ligand have been synthesized and evaluated. Very high affinity protease inhibitors (PIs) with an interesting activity on wild-type HIV and a panel of multi-PI resistant HIV-1 mutants containing clinically observed, primary mutations were identified using a cell-based assay. Crystal structure analysis was conducted on a number of PI analogues in complex with HIV-1 protease.
Assuntos
Acetamidas/química , Furanos/química , Inibidores da Protease de HIV/química , HIV-1/efeitos dos fármacos , Sulfonamidas/química , Acetamidas/síntese química , Acetamidas/farmacologia , Cristalografia por Raios X , Darunavir , Farmacorresistência Viral , Furanos/síntese química , Furanos/farmacologia , Inibidores da Protease de HIV/síntese química , Inibidores da Protease de HIV/farmacologia , HIV-1/enzimologia , HIV-1/genética , Ligantes , Modelos Moleculares , Conformação Molecular , Mutação , Estereoisomerismo , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/farmacologiaRESUMO
Graft rejection in transplant patients is managed clinically by suppressing T-cell function with immunosuppressive drugs such as prednisolone and methylprednisolone. In such immunocompromised hosts, human cytomegalovirus (HCMV) is an important opportunistic pathogen and can cause severe morbidity and mortality. Currently, the effect of glucocorticosteroids (GCSs) on the HCMV life cycle remains unclear. Previous reports showed enhanced lytic replication of HCMV in vitro in the presence of GCSs. In the present study, we explored the implications of steroid exposure on latency and reactivation. We observed a direct effect of several GCSs used in the clinic on the activation of a quiescent viral major immediate-early promoter in stably transfected THP-1 monocytic cells. This activation was prevented by the glucocorticoid receptor (GR) antagonist Ru486 and by shRNA-mediated knockdown of the GR. Consistent with this observation, prednisolone treatment of latently infected primary monocytes resulted in HCMV reactivation. Analysis of the phenotype of these cells showed that treatment with GCSs was correlated with differentiation to an anti-inflammatory macrophage-like cell type. On the basis that these observations may be pertinent to HCMV reactivation in post-transplant settings, we retrospectively evaluated the incidence, viral kinetics and viral load of HCMV in liver transplant patients in the presence or absence of GCS treatment. We observed that combination therapy of baseline prednisolone and augmented methylprednisolone, upon organ rejection, significantly increased the incidence of HCMV infection in the intermediate risk group where donor and recipient are both HCMV seropositive (D+R+) to levels comparable with the high risk D+R- group.
Assuntos
Infecções por Citomegalovirus/metabolismo , Citomegalovirus/fisiologia , Glucocorticoides/metabolismo , Fígado/virologia , Células Mieloides/virologia , Ativação Viral/fisiologia , Latência Viral/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Diferenciação Celular/fisiologia , Linhagem Celular , Doenças Transmissíveis/metabolismo , Doenças Transmissíveis/virologia , Infecções por Citomegalovirus/virologia , Feminino , Humanos , Hospedeiro Imunocomprometido/fisiologia , Fígado/metabolismo , Transplante de Fígado/métodos , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Monócitos/virologia , Células Mieloides/metabolismo , Receptores de Glucocorticoides/metabolismo , Carga Viral/fisiologia , Adulto JovemRESUMO
2H,3'H-Spiro[benzofuran-3,2'-naphthoquinones], constituting a new spiroheterocyclic skeleton, were synthesized starting from 2-aryloxymethyl-1,4-naphthoquinones by means of a palladium(II)-catalyzed reaction, which is a new spirocyclic transformation. Under optimal conditions, i.e. 10 mol % of palladium(II) acetate, 15 mol % of 3,5-dichloropyridine, and 5 mol % of trifluoroacetic acid in acetic acid at 110 °C, various 2H,3'H-spiro[benzofuran-3,2'-naphthoquinones] were synthesized in yields strongly dependent on the substitution pattern of the aryloxy group. Unsubstituted or ortho-substituted 2-aryloxymethyl-1,4-quinones were found to rearrange toward the corresponding 2-(4-hydroxyaryl)-1,4-quinones upon treatment with trifluoroacetic acid.
Assuntos
Benzofuranos/síntese química , Naftoquinonas/síntese química , Compostos Organometálicos/química , Paládio/química , Compostos de Espiro/síntese química , Benzofuranos/química , Catálise , Estrutura Molecular , Naftoquinonas/química , Compostos de Espiro/químicaRESUMO
The design and synthesis of novel HIV-1 protease inhibitors (PIs) (1-22), which display high potency against HIV-1 wild-type and multi-PI-resistant HIV-mutant clinical isolates, is described. Lead optimization was initiated from compound 1, a Phe-Phe hydroxyethylene peptidomimetic PI, and was directed towards the discovery of new PIs suitable for a long-acting (LA) injectable drug application. Introducing a heterocyclic 6-methoxy-3-pyridinyl or a 6-(dimethylamino)-3-pyridinyl moiety (R(3)) at the para-position of the P1' benzyl fragment generated compounds with antiviral potency in the low single digit nanomolar range. Halogenation or alkylation of the metabolic hot spots on the various aromatic rings resulted in PIs with high stability against degradation in human liver microsomes and low plasma clearance in rats. Replacing the chromanolamine moiety (R(1)) in the P2 protease binding site by a cyclopentanolamine or a cyclohexanolamine derivative provided a series of high clearance PIs (16-22) with EC(50)s on wild-type HIV-1 in the range of 0.8-1.8 nM. PIs 18 and 22, formulated as nanosuspensions, showed gradual but sustained and complete release from the injection site over two months in rats, and were therefore identified as interesting candidates for a LA injectable drug application for treating HIV/AIDS.
Assuntos
Carbamatos/síntese química , Dipeptídeos/síntese química , Desenho de Fármacos , Inibidores da Protease de HIV/síntese química , Protease de HIV/química , HIV-1/enzimologia , Piridinas/síntese química , Alquilação , Animais , Carbamatos/química , Carbamatos/farmacocinética , Dipeptídeos/química , Dipeptídeos/farmacocinética , Protease de HIV/metabolismo , Inibidores da Protease de HIV/química , Inibidores da Protease de HIV/farmacocinética , Meia-Vida , Halogenação , Humanos , Microssomos Hepáticos/metabolismo , Piridinas/química , Piridinas/farmacocinética , Ratos , Relação Estrutura-AtividadeRESUMO
A series of darunavir analogues featuring a substituted bis-THF ring as P2 ligand have been synthesized and evaluated. High affinity protease inhibitors (PIs) with an interesting activity on wild-type HIV and a panel of multi-PI resistant HIV-1 mutants containing clinically observed, primary mutations were identified using a cell-based assay. A number of PIs have been synthesized that show equivalent and greater activity for HIV-1 mutant strains as compared to wild-type HIV-1. The activity on the purified enzyme was confirmed for a selection of analogues.
RESUMO
We have discovered a novel class of human immunodeficiency virus (HIV) reverse transcriptase (RT) inhibitors that block the polymerization reaction in a mode distinct from those of the nucleoside or nucleotide RT inhibitors (NRTIs) and nonnucleoside RT inhibitors (NNRTIs). For this class of indolopyridone compounds, steady-state kinetics revealed competitive inhibition with respect to the nucleotide substrate. Despite substantial structural differences with classical chain terminators or natural nucleotides, these data suggest that the nucleotide binding site of HIV RT may accommodate this novel class of RT inhibitors. To test this hypothesis, we have studied the mechanism of action of the prototype compound indolopyridone-1 (INDOPY-1) using a variety of complementary biochemical tools. Time course experiments with heteropolymeric templates showed "hot spots" for inhibition following the incorporation of pyrimidines (T>C). Moreover, binding studies and site-specific footprinting experiments revealed that INDOPY-1 traps the complex in the posttranslocational state, preventing binding and incorporation of the next complementary nucleotide. The novel mode of action translates into a unique resistance profile. While INDOPY-1 susceptibility is unaffected by mutations associated with NNRTI or multidrug NRTI resistance, mutations M184V and Y115F are associated with decreased susceptibility, and mutation K65R confers hypersusceptibility to INDOPY-1. This resistance profile provides additional evidence for active site binding. In conclusion, this class of indolopyridones can occupy the nucleotide binding site of HIV RT by forming a stable ternary complex whose stability is mainly dependent on the nature of the primer 3' end.
Assuntos
Replicação do DNA/efeitos dos fármacos , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/enzimologia , Indóis/farmacologia , Nitrilas/farmacologia , Piridonas/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Primers do DNA , Ensaio de Desvio de Mobilidade Eletroforética , Transcriptase Reversa do HIV/genética , Indóis/síntese química , Indóis/química , Cinética , Nitrilas/síntese química , Nitrilas/química , Piridonas/síntese química , Piridonas/química , Análise de Sequência de DNARESUMO
[reaction: see text] Two short and efficient synthesis routes have been developed for bis-THF-alcohol 2, a key building block of the investigational HIV protease inhibitor TMC114 (1). Using S-2,3-O-isopropylideneglyceraldehyde (4) as the source of chirality, both routes are based on a diastereoselective Michael addition of nitromethane to give predominantly the syn congeners 6 followed by a Nef oxidation and cyclization to afford lactone acetals 8, which are reduced and cyclized to give 2.
Assuntos
Furanos/síntese química , Inibidores da Protease de HIV/síntese química , Sulfonamidas/síntese química , Ciclização , Darunavir , Furanos/química , Furanos/farmacologia , Inibidores da Protease de HIV/química , Inibidores da Protease de HIV/farmacologia , Estrutura Molecular , Estereoisomerismo , Sulfonamidas/química , Sulfonamidas/farmacologiaRESUMO
Several quinone type compounds were isolated from the hexane, dichloromethane, and ethyl acetate extracts of the roots of Pentas longiflora. The hexane extract afforded two new compounds, [(3alpha,3'alpha,4beta,4'beta)-3,3']-dimethoxy-cis-[4,4'-bis(3,4,5,10-tetrahydro-1H-naphtho[2,3-c]pyran)]-5,5',10,10'-tetraone (1) and cis-3,4-dihydroxy-3,4-dihydromollugin (2), together with six known compounds, namely, pentalongin, mollugin, trans-3,4-dihydroxy-3,4-dihydromollugin, methyl-2,3-epoxy-3-prenyl-1,4-naphthoquinone-2-carboxylate, tectoquinone, and 3-hydroxymollugin. From the dichloromethane extract were isolated the three known compounds 3-methoxymollugin, methyl-3-prenyl-1,4-naphthoquinone-2-carboxylate, and scopoletin, while the ethyl acetate extract afforded the known 2-methoxy-3-methylanthraquinone.