Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Elife ; 122024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712823

RESUMO

To date, all major modes of monoclonal antibody therapy targeting SARS-CoV-2 have lost significant efficacy against the latest circulating variants. As SARS-CoV-2 omicron sublineages account for over 90% of COVID-19 infections, evasion of immune responses generated by vaccination or exposure to previous variants poses a significant challenge. A compelling new therapeutic strategy against SARS-CoV-2 is that of single-domain antibodies, termed nanobodies, which address certain limitations of monoclonal antibodies. Here, we demonstrate that our high-affinity nanobody repertoire, generated against wild-type SARS-CoV-2 spike protein (Mast et al., 2021), remains effective against variants of concern, including omicron BA.4/BA.5; a subset is predicted to counter resistance in emerging XBB and BQ.1.1 sublineages. Furthermore, we reveal the synergistic potential of nanobody cocktails in neutralizing emerging variants. Our study highlights the power of nanobody technology as a versatile therapeutic and diagnostic tool to combat rapidly evolving infectious diseases such as SARS-CoV-2.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , SARS-CoV-2 , Anticorpos de Domínio Único , Glicoproteína da Espícula de Coronavírus , Animais , Humanos , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/uso terapêutico , COVID-19/imunologia , COVID-19/terapia , SARS-CoV-2/imunologia , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/uso terapêutico , Glicoproteína da Espícula de Coronavírus/imunologia
2.
bioRxiv ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-37503298

RESUMO

To date, all major modes of monoclonal antibody therapy targeting SARS-CoV-2 have lost significant efficacy against the latest circulating variants. As SARS-CoV-2 omicron sublineages account for over 90% of COVID-19 infections, evasion of immune responses generated by vaccination or exposure to previous variants poses a significant challenge. A compelling new therapeutic strategy against SARS-CoV-2 is that of single domain antibodies, termed nanobodies, which address certain limitations of monoclonal antibodies. Here we demonstrate that our high-affinity nanobody repertoire, generated against wild-type SARS-CoV-2 spike protein (Mast, Fridy et al. 2021), remains effective against variants of concern, including omicron BA.4/BA.5; a subset is predicted to counter resistance in emerging XBB and BQ.1.1 sublineages. Furthermore, we reveal the synergistic potential of nanobody cocktails in neutralizing emerging variants. Our study highlights the power of nanobody technology as a versatile therapeutic and diagnostic tool to combat rapidly evolving infectious diseases such as SARS-CoV-2.

3.
J Biol Chem ; 299(3): 102954, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36720309

RESUMO

COVID-19, caused by the coronavirus SARS-CoV-2, represents a serious worldwide health issue, with continually emerging new variants challenging current therapeutics. One promising alternate therapeutic avenue is represented by nanobodies, small single-chain antibodies derived from camelids with numerous advantageous properties and the potential to neutralize the virus. For identification and characterization of a broad spectrum of anti-SARS-CoV-2 Spike nanobodies, we further optimized a yeast display method, leveraging a previously published mass spectrometry-based method, using B-cell complementary DNA from the same immunized animals as a source of VHH sequences. Yeast display captured many of the sequences identified by the previous approach, as well as many additional sequences that proved to encode a large new repertoire of nanobodies with high affinities and neutralization activities against different SARS-CoV-2 variants. We evaluated DNA shuffling applied to the three complementarity-determining regions of antiviral nanobodies. The results suggested a surprising degree of modularity to complementarity-determining region function. Importantly, the yeast display approach applied to nanobody libraries from immunized animals allows parallel interrogation of a vast number of nanobodies. For example, we employed a modified yeast display to carry out massively parallel epitope binning. The current yeast display approach proved comparable in efficiency and specificity to the mass spectrometry-based approach, while requiring none of the infrastructure and expertise required for that approach, making these highly complementary approaches that together appear to comprehensively explore the paratope space. The larger repertoires produced maximize the likelihood of discovering broadly specific reagents and those that powerfully synergize in mixtures.


Assuntos
Anticorpos Neutralizantes , SARS-CoV-2 , Anticorpos de Domínio Único , Animais , Anticorpos Neutralizantes/genética , Anticorpos Antivirais/genética , Regiões Determinantes de Complementaridade , Saccharomyces cerevisiae/genética , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Anticorpos de Domínio Único/genética , Glicoproteína da Espícula de Coronavírus/imunologia
4.
Elife ; 102021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34874007

RESUMO

The emergence of SARS-CoV-2 variants threatens current vaccines and therapeutic antibodies and urgently demands powerful new therapeutics that can resist viral escape. We therefore generated a large nanobody repertoire to saturate the distinct and highly conserved available epitope space of SARS-CoV-2 spike, including the S1 receptor binding domain, N-terminal domain, and the S2 subunit, to identify new nanobody binding sites that may reflect novel mechanisms of viral neutralization. Structural mapping and functional assays show that indeed these highly stable monovalent nanobodies potently inhibit SARS-CoV-2 infection, display numerous neutralization mechanisms, are effective against emerging variants of concern, and are resistant to mutational escape. Rational combinations of these nanobodies that bind to distinct sites within and between spike subunits exhibit extraordinary synergy and suggest multiple tailored therapeutic and prophylactic strategies.


Assuntos
COVID-19/imunologia , SARS-CoV-2/imunologia , Anticorpos de Domínio Único/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Sítios de Ligação , Camelídeos Americanos/imunologia , Epitopos/genética , Epitopos/imunologia , Células HEK293 , Humanos , Masculino , Testes de Neutralização , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
5.
bioRxiv ; 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33851164

RESUMO

Despite the great promise of vaccines, the COVID-19 pandemic is ongoing and future serious outbreaks are highly likely, so that multi-pronged containment strategies will be required for many years. Nanobodies are the smallest naturally occurring single domain antigen binding proteins identified to date, possessing numerous properties advantageous to their production and use. We present a large repertoire of high affinity nanobodies against SARS-CoV-2 Spike protein with excellent kinetic and viral neutralization properties, which can be strongly enhanced with oligomerization. This repertoire samples the epitope landscape of the Spike ectodomain inside and outside the receptor binding domain, recognizing a multitude of distinct epitopes and revealing multiple neutralization targets of pseudoviruses and authentic SARS-CoV-2, including in primary human airway epithelial cells. Combinatorial nanobody mixtures show highly synergistic activities, and are resistant to mutational escape and emerging viral variants of concern. These nanobodies establish an exceptional resource for superior COVID-19 prophylactics and therapeutics.

6.
Structure ; 24(8): 1282-1291, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27427481

RESUMO

Dihydrodipicolinate synthase (DHDPS) catalyzes the first committed step in the lysine biosynthesis pathway of bacteria. The pathway can be regulated by feedback inhibition of DHDPS through the allosteric binding of the end product, lysine. The current dogma states that DHDPS from Gram-negative bacteria are inhibited by lysine but orthologs from Gram-positive species are not. The 1.65-Å resolution structure of the Gram-negative Legionella pneumophila DHDPS and the 1.88-Å resolution structure of the Gram-positive Streptococcus pneumoniae DHDPS bound to lysine, together with comprehensive functional analyses, show that this dogma is incorrect. We subsequently employed our crystallographic data with bioinformatics, mutagenesis, enzyme kinetics, and microscale thermophoresis to reveal that lysine-mediated inhibition is not defined by Gram staining, but by the presence of a His or Glu at position 56 (Escherichia coli numbering). This study has unveiled the molecular determinants defining lysine-mediated allosteric inhibition of bacterial DHDPS.


Assuntos
Escherichia coli/enzimologia , Retroalimentação Fisiológica , Hidroliases/química , Legionella pneumophila/enzimologia , Lisina/química , Streptococcus pneumoniae/enzimologia , Regulação Alostérica , Sítio Alostérico , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Expressão Gênica , Hidroliases/genética , Hidroliases/metabolismo , Cinética , Legionella pneumophila/genética , Lisina/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Streptococcus pneumoniae/genética , Especificidade por Substrato
7.
RNA ; 22(9): 1467-75, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27402899

RESUMO

As a result of its importance in key RNA metabolic processes, the ribonucleolytic RNA exosome complex has been the focus of intense study for almost two decades. Research on exosome subunit assembly, cofactor and substrate interaction, enzymatic catalysis and structure have largely been conducted using complexes produced in the yeast Saccharomyces cerevisiae or in bacteria. Here, we examine different populations of endogenous exosomes from human embryonic kidney (HEK) 293 cells and test their enzymatic activity and structural integrity. We describe methods to prepare EXOSC10-containing, enzymatically active endogenous human exosomes at suitable yield and purity for in vitro biochemistry and negative stain transmission electron microscopy. This opens the door for assays designed to test the in vitro effects of putative cofactors on human exosome activity and will enable structural studies of preparations from endogenous sources.


Assuntos
Exossomos/química , Exossomos/metabolismo , Células HEK293 , Humanos , RNA Mensageiro/química , RNA Mensageiro/metabolismo
8.
PLoS Biol ; 14(2): e1002365, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26891179

RESUMO

The nuclear pore complex (NPC) is responsible for nucleocytoplasmic transport and constitutes a hub for control of gene expression. The components of NPCs from several eukaryotic lineages have been determined, but only the yeast and vertebrate NPCs have been extensively characterized at the quaternary level. Significantly, recent evidence indicates that compositional similarity does not necessarily correspond to homologous architecture between NPCs from different taxa. To address this, we describe the interactome of the trypanosome NPC, a representative, highly divergent eukaryote. We identify numerous new NPC components and report an exhaustive interactome, allowing assignment of trypanosome nucleoporins to discrete NPC substructures. Remarkably, despite retaining similar protein composition, there are exceptional architectural dissimilarities between opisthokont (yeast and vertebrates) and excavate (trypanosomes) NPCs. Whilst elements of the inner core are conserved, numerous peripheral structures are highly divergent, perhaps reflecting requirements to interface with divergent nuclear and cytoplasmic functions. Moreover, the trypanosome NPC has almost complete nucleocytoplasmic symmetry, in contrast to the opisthokont NPC; this may reflect divergence in RNA export processes at the NPC cytoplasmic face, as we find evidence supporting Ran-dependent mRNA export in trypanosomes, similar to protein transport. We propose a model of stepwise acquisition of nucleocytoplasmic mechanistic complexity and demonstrate that detailed dissection of macromolecular complexes provides fuller understanding of evolutionary processes.


Assuntos
Evolução Molecular , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/genética , Microscopia Imunoeletrônica , Poro Nuclear/química , Poro Nuclear/metabolismo , Estrutura Quaternária de Proteína , Trypanosoma brucei brucei
9.
Anal Biochem ; 477: 92-4, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25707320

RESUMO

In addition to its high affinity for antibody Fc domains, staphylococcal Protein A has been shown to bind certain Fab domains. We investigated this in order to develop a small, recombinant Protein A-binding alternative to immunoglobulin G (IgG) from nanobodies, single-domain antibodies derived from a camelid variant IgG's variable region. We engineered a nanobody with affinity solely for Protein A as well as a dimerized version of higher affinity for typical multidomain Protein A constructs. Because this recombinant nanobody can be immobilized using a cleavable crosslinker, it has proven to be suitable for the isolation and mild elution of protein complexes in native conditions.


Assuntos
Engenharia de Proteínas , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/imunologia , Proteína Estafilocócica A/imunologia , Proteína Estafilocócica A/isolamento & purificação , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Anticorpos de Domínio Único/química
10.
PLoS One ; 8(12): e83419, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24349508

RESUMO

Given the rise in drug-resistant Streptococcus pneumoniae, there is an urgent need to discover new antimicrobials targeting this pathogen and an equally urgent need to characterize new drug targets. A promising antibiotic target is dihydrodipicolinate synthase (DHDPS), which catalyzes the rate-limiting step in lysine biosynthesis. In this study, we firstly show by gene knock out studies that S. pneumoniae (sp) lacking the DHDPS gene is unable to grow unless supplemented with lysine-rich media. We subsequently set out to characterize the structure, function and stability of the enzyme drug target. Our studies show that sp-DHDPS is folded and active with a k(cat) = 22 s(-1), K(M)(PYR) = 2.55 ± 0.05 mM and K(M)(ASA) = 0.044 ± 0.003 mM. Thermal denaturation experiments demonstrate sp-DHDPS exhibits an apparent melting temperature (T(M)(app)) of 72 °C, which is significantly greater than Escherichia coli DHDPS (Ec-DHDPS) (T(M)(app) = 59 °C). Sedimentation studies show that sp-DHDPS exists in a dimer-tetramer equilibrium with a K(D)(4→2) = 1.7 nM, which is considerably tighter than its E. coli ortholog (K(D)(4→2) = 76 nM). To further characterize the structure of the enzyme and probe its enhanced stability, we solved the high resolution (1.9 Å) crystal structure of sp-DHDPS (PDB ID 3VFL). The enzyme is tetrameric in the crystal state, consistent with biophysical measurements in solution. Although the sp-DHDPS and Ec-DHDPS active sites are almost identical, the tetramerization interface of the s. pneumoniae enzyme is significantly different in composition and has greater buried surface area (800 Å(2)) compared to its E. coli counterpart (500 Å(2)). This larger interface area is consistent with our solution studies demonstrating that sp-DHDPS is considerably more thermally and thermodynamically stable than Ec-DHDPS. Our study describe for the first time the knock-out phenotype, solution properties, stability and crystal structure of DHDPS from S. pneumoniae, a promising antimicrobial target.


Assuntos
Antibacterianos , Proteínas de Bactérias , Sistemas de Liberação de Medicamentos , Hidroliases , Streptococcus pneumoniae/enzimologia , Streptococcus pneumoniae/genética , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cristalografia por Raios X , Escherichia coli , Técnicas de Silenciamento de Genes , Hidroliases/antagonistas & inibidores , Hidroliases/química , Hidroliases/genética , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
11.
Structure ; 21(4): 560-71, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23499021

RESUMO

The nuclear pore complex, composed of proteins termed nucleoporins (Nups), is responsible for nucleocytoplasmic transport in eukaryotes. Nuclear pore complexes (NPCs) form an annular structure composed of the nuclear ring, cytoplasmic ring, a membrane ring, and two inner rings. Nup192 is a major component of the NPC's inner ring. We report the crystal structure of Saccharomyces cerevisiae Nup192 residues 2-960 [ScNup192(2-960)], which adopts an α-helical fold with three domains (i.e., D1, D2, and D3). Small angle X-ray scattering and electron microscopy (EM) studies reveal that ScNup192(2-960) could undergo long-range transition between "open" and "closed" conformations. We obtained a structural model of full-length ScNup192 based on EM, the structure of ScNup192(2-960), and homology modeling. Evolutionary analyses using the ScNup192(2-960) structure suggest that NPCs and vesicle-coating complexes are descended from a common membrane-coating ancestral complex. We show that suppression of Nup192 expression leads to compromised nuclear transport and hypothesize a role for Nup192 in modulating the permeability of the NPC central channel.


Assuntos
Evolução Molecular , Modelos Moleculares , Complexo de Proteínas Formadoras de Poros Nucleares/química , Poro Nuclear/química , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Transporte Ativo do Núcleo Celular/fisiologia , Cristalização , Microscopia Eletrônica , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Espalhamento a Baixo Ângulo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA