Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Nucl Med ; 65(4): 533-539, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38485273

RESUMO

ß--emitting 177Lu-octreotate is an approved somatostatin receptor subtype 2 (SSTR2)-directed peptide receptor radionuclide therapy for the treatment of gastroenteropancreatic neuroendocrine tumors (NETs). However,177Lu-octreotate has fast pharmacokinetics, requiring up to 4 treatment doses. Moreover, 177Lu is less than ideal for theranostics because of the low branching ratio of its γ-emissions, which limits its SPECT imaging capability. Compared with 177Lu, 67Cu has better decay properties for use as a theranostic. Here, we report the preclinical evaluation of a long-lived somatostatin analog, [67Cu]Cu-DOTA-Evans blue-TATE (EB-TATE), against SSTR2-positive NETs. Methods: The in vitro cytotoxicity of [67Cu]Cu-EB-TATE was investigated on 2-dimensional cells and 3-dimensional spheroids. In vivo pharmacokinetics and dosimetry were studied in healthy BALB/c mice, whereas ex vivo biodistribution, micro-SPECT/CT imaging, and therapy studies were done on athymic nude mice bearing QGP1.SSTR2 and BON1.SSTR2 xenografts. Therapeutic efficacy was compared with [177Lu]Lu-EB-TATE. Results: Projected human effective doses of [67Cu]Cu-EB-TATE for male (0.066 mSv/MBq) and female (0.085 mSv/MBq) patients are tolerable. In vivo micro-SPECT/CT imaging of SSTR2-positive xenografts with [67Cu]Cu-EB-TATE showed tumor-specific uptake and prolonged accumulation. Biodistribution showed tumor accumulation, with concurrent clearance from major organs over a period of 72 h. [67Cu]Cu-EB-TATE was more effective (60%) at eliminating tumors that were smaller than 50 mm3 within the first 15 d of therapy than was [177Lu]Lu-EB-TATE (20%) after treatment with 2 doses of 15 MBq administered 10 d apart. Mean survival of [67Cu]Cu-EB-TATE-treated groups was 90 d and more than 90 d, whereas that of [177Lu]Lu-EB-TATE was more than 90 d and 89 d against vehicle control groups (26 d and 53 d), for QGP1.SSTR2 and BON1.SSTR2 xenografts, respectively. Conclusion: [67Cu]Cu-EB-TATE exhibited high SSTR2-positive NET uptake and retention, with favorable dosimetry and SPECT/CT imaging capabilities. The antitumor efficacy of [67Cu]Cu-EB-TATE is comparable to that of [177Lu]Lu-EB-TATE, with [67Cu]Cu-EB-TATE being slightly more effective than [177Lu]Lu-EB-TATE for complete remission of small tumors. [67Cu]Cu-EB-TATE therefore warrants clinical development.


Assuntos
Tumores Neuroendócrinos , Animais , Camundongos , Humanos , Masculino , Feminino , Tumores Neuroendócrinos/diagnóstico por imagem , Tumores Neuroendócrinos/radioterapia , Tumores Neuroendócrinos/tratamento farmacológico , Octreotida , Medicina de Precisão , Azul Evans , Receptores de Somatostatina/metabolismo , Distribuição Tecidual , Camundongos Nus
2.
Br J Cancer ; 129(1): 153-162, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37095184

RESUMO

BACKGROUND: HER2 is overexpressed in 25-30% of breast cancer. Multiple domains targeting of a receptor can have synergistic/additive therapeutic effects. METHODS: Two domain-specific ADCs trastuzumab-PEG6-DM1 (domain IV) and pertuzumab-PEG6-DM1 (domain II) were developed, characterised and radiolabeled to obtain [89Zr]Zr-trastuzumab-PEG6-DM1 and [67Cu]Cu-pertuzumab-PEG6-DM1 to study their in vitro (binding assay, internalisation and cytotoxicity) and in vivo (pharmacokinetics, biodistribution and immunoPET/SPECT imaging) characteristics. RESULTS: The ADCs had an average drug-to-antibody ratio of 3. Trastuzumab did not compete with [67Cu]Cu-pertuzumab-PEG6-DM1 for binding to HER2. The highest antibody internalisation was observed with the combination of ADCs in BT-474 cells compared with single antibodies or ADCs. The combination of the two ADCs had the lowest IC50 compared with treatment using the single ADCs or controls. Pharmacokinetics showed biphasic half-lives with fast distribution and slow elimination, and an AUC that was five-fold higher for [89Zr]Zr-trastuzumab-PEG6-DM1 compared with [67Cu]Cu-pertuzumab-PEG6-DM1. Tumour uptake of [89Zr]Zr-trastuzumab-PEG6-DM1 was 51.3 ± 17.3% IA/g (BT-474), and 12.9 ± 2.1% IA/g (JIMT-1) which was similarly to [67Cu]Cu-pertuzumab-PEG6-DM1. Mice pre-blocked with pertuzumab had [89Zr]Zr-trastuzumab-PEG6-DM1 tumour uptakes of 66.3 ± 33.9% IA/g (BT-474) and 25.3 ± 4.9% IA/g (JIMT-1) at 120 h p.i. CONCLUSION: Using these biologics simultaneously as biparatopic theranostic agents has additive benefits.


Assuntos
Neoplasias , Medicina de Precisão , Animais , Camundongos , Distribuição Tecidual , Receptor ErbB-2/metabolismo , Trastuzumab/uso terapêutico , Neoplasias/tratamento farmacológico
3.
Pharmaceutics ; 14(12)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36559316

RESUMO

Antibodies that recognize cancer biomarkers, such as MUC16, can be used as vehicles to deliver contrast agents (imaging) or cytotoxic payloads (therapy) to the site of tumors. MUC16 is overexpressed in 80% of epithelial ovarian cancer (EOC) and 65% of pancreatic ductal adenocarcinomas (PDAC), where effective 'theranostic' probes are much needed. This work aims to develop fully human antibodies against MUC16 and evaluate them as potential immuno-PET imaging probes for detecting ovarian and pancreatic cancers. We developed a fully human monoclonal antibody, M16Ab, against MUC16 using phage display. M16Ab was conjugated with p-SCN-Bn-DFO and radiolabeled with 89Zr. 89Zr-DFO-M16Ab was then evaluated for binding specificity and affinity using flow cytometry. In vivo evaluation of 89Zr-DFO-M16Ab was performed by microPET/CT imaging at different time points at 24−120 h post injection (p.i.) and ex vivo biodistribution studies in mice bearing MUC16-expressing OVCAR3, SKOV3 (ovarian) and SW1990 (pancreatic) xenografts. 89Zr-DFO-M16Ab bound specifically to MUC16-expressing cancer cells with an EC50 of 10nM. 89Zr-DFO-M16Ab was stable in serum and showed specific uptake and retention in tumor xenografts even after 120 h p.i. (microPET/CT) with tumor-to-blood ratios > 43 for the SW1990 xenograft. Specific tumor uptake was observed for SW1990/OVCAR3 xenografts but not in MUC16-negative SKOV3 xenografts. Pharmacokinetic study shows a relatively short distribution (t1/2α) and elimination half-life (t1/2ß) of 4.4 h and 99 h, respectively. In summary, 89Zr-DFO-M16Ab is an effective non-invasive imaging probe for ovarian and pancreatic cancers and shows promise for further development of theranostic radiopharmaceuticals.

4.
Pharmaceutics ; 14(9)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36145664

RESUMO

Matuzumab and nimotuzumab are anti-EGFR monoclonal antibodies that bind to different epitopes of domain III of EGFR. We developed 89Zr-matuzumab as a PET probe for diagnosis/monitoring of response to treatment of a noncompeting anti-EGFR nimotuzumab antibody drug conjugate (ADC) using mouse colorectal cancer (CRC) xenografts. We developed 89Zr-matuzumab and performed quality control in EGFR-positive DLD-1 cells. The KD of matuzumab, DFO-matuzumab and 89Zr-matuzumab in DLD-1 cells was 5.9, 6.2 and 3 nM, respectively. A competitive radioligand binding assay showed that 89Zr-matuzumab and nimotuzumab bound to noncompeting epitopes of EGFR. MicroPET/CT imaging and biodistribution of 89Zr-matuzumab in mice bearing EGFR-positive xenografts (HT29, DLD-1 and MDA-MB-231) showed high uptake that was blocked with pre-dosing with matuzumab but not with the noncompeting binder nimotuzumab. We evaluated nimotuzumab-PEG6-DM1 ADC in CRC cells. IC50 of nimotuzumab-PEG6-DM1 in SNU-C2B, DLD-1 and SW620 cells was dependent on EGFR density and was up to five-fold lower than that of naked nimotuzumab. Mice bearing the SNU-C2B xenograft were treated using three 15 mg/kg doses of nimotuzumab-PEG6-DM1, and 89Zr-matuzumab microPET/CT was used to monitor the response to treatment. Treatment resulted in complete remission of the SNU-C2B tumor in 2/3 mice. Matuzumab and nimotuzumab are noncompeting and can be used simultaneously.

5.
Theranostics ; 12(13): 5971-5985, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966589

RESUMO

Background: Radiolabeled somatostatin analogues (e.g. [68Ga]Ga-DOTATATE and [177Lu]Lu-DOTATATE) have been used to diagnose, monitor, and treat neuroendocrine tumour (NET) patients with great success. [18F]AlF-NOTA-octreotide, a promising 18F-labeled somatostatin analogue and potential alternative for 68Ga-DOTA-peptides, is under clinical evaluation. However, ideally, the same precursor (combination of chelator-linker-vector) can be used for production of both diagnostic and therapeutic radiopharmaceuticals with very similar (e.g. Al18F-method in combination with therapeutic radiometals 213Bi/177Lu) or identical (e.g. complementary Tb-radionuclides) pharmacokinetic properties, allowing for accurate personalised dosimetry estimation and radionuclide therapy of NET patients. In this study we evaluated 3p-C-NETA, as potential theranostic Al18F-chelator and present first results of radiosynthesis and preclinical evaluation of [18F]AlF-3p-C-NETA-TATE. Methods: 3p-C-NETA was synthesized and radiolabeled with diagnostic (68Ga, Al18F) or therapeutic (177Lu, 161Tb, 213Bi, 225Ac and 67Cu) radionuclides at different temperatures (25-95 °C). The in vitro stability of the corresponding radiocomplexes was determined in phosphate-buffered saline (PBS) and human serum. 3p-C-NETA-TATE was synthesized using standard solid/liquid-phase peptide synthesis. [18F]AlF-3p-C-NETA-TATE was synthesized in an automated AllinOne® synthesis module and the in vitro stability of [18F]AlF-3p-C-NETA-TATE was evaluated in formulation buffer, PBS and human serum. [18F]AlF-3p-C-NETA-TATE pharmacokinetics were evaluated using µPET/MRI in healthy rats, with [18F]AlF-NOTA-Octreotide as benchmark. Results: 3p-C-NETA quantitatively sequestered 177Lu, 213Bi and 67Cu at 25 °C while heating was required to bind Al18F, 68Ga, 161Tb and 225Ac efficiently. The [18F]AlF-, [177Lu]Lu- and [161Tb]Tb-3p-C-NETA-complex showed excellent in vitro stability in both PBS and human serum over the study period. In contrast, [67Cu]Cu- and [225Ac]Ac-, [68Ga]Ga-3p-C-NETA were stable in PBS, but not in human serum. [18F]AlF-3p-C-NETA-TATE was obtained in good radiochemical yield and radiochemical purity. [18F]AlF-3p-C-NETA-TATE displayed good in vitro stability for 4 h in all tested conditions. Finally, [18F]AlF-3p-C-NETA-TATE showed excellent pharmacokinetic properties comparable with the results obtained for [18F]AlF-NOTA-Octreotide. Conclusions: 3p-C-NETA is a versatile chelator that can be used for both diagnostic applications (Al18F) and targeted radionuclide therapy (213Bi, 177Lu, 161Tb). It has the potential to be the new theranostic chelator of choice for clinical applications in nuclear medicine.


Assuntos
Tumores Neuroendócrinos , Compostos Radiofarmacêuticos , Animais , Quelantes/química , Radioisótopos de Flúor , Radioisótopos de Gálio , Humanos , Tumores Neuroendócrinos/diagnóstico por imagem , Tumores Neuroendócrinos/patologia , Tumores Neuroendócrinos/radioterapia , Octreotida/uso terapêutico , Tomografia por Emissão de Pósitrons , Radioisótopos , Cintilografia , Compostos Radiofarmacêuticos/uso terapêutico , Ratos , Somatostatina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA