Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Brain Sci ; 13(12)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38137104

RESUMO

Though previous studies with autistic individuals have provided behavioral evidence of animacy perception difficulties, the spatio-temporal dynamics of animacy processing in autism remain underexplored. This study investigated how animacy is neurally encoded in autistic adults, and whether potential deficits in animacy processing have cascading deleterious effects on their social functioning skills. We employed a picture naming paradigm that recorded accuracy and response latencies to animate and inanimate pictures in young autistic adults and age- and IQ-matched healthy individuals, while also employing high-density EEG analysis to map the spatio-temporal dynamics of animacy processing. Participants' social skills were also assessed through a social comprehension task. The autistic adults exhibited lower accuracy than controls on the animate pictures of the task and also exhibited altered brain responses, including larger and smaller N100 amplitudes than controls on inanimate and animate stimuli, respectively. At late stages of processing, there were shorter slow negative wave latencies for the autistic group as compared to controls for the animate trials only. The autistic individuals' altered brain responses negatively correlated with their social difficulties. The results suggest deficits in brain responses to animacy in the autistic group, which were related to the individuals' social functioning skills.

2.
Brain Sci ; 13(12)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38137119

RESUMO

Generalized spike wave discharges (GSWDs) are the typical electroencephalographic findings of Idiopathic Generalized Epilepsies (IGEs). These discharges are either interictal or ictal and recent evidence suggests differences in their pathogenesis. The aim of this study is to investigate, through functional connectivity analysis, the pre-interictal network state in IGEs, which precedes the formation of the interictal GSWDs. A high-density electroencephalogram (HD-EEG) was recorded in twenty-one patients with IGEs, and cortical connectivity was analyzed based on lagged coherence and individual anatomy. Graph theory analysis was used to estimate network features, assessed using the characteristic path length and clustering coefficient. The functional connectivity analysis identified two distinct networks during the pre-interictal state. These networks exhibited reversed connectivity attributes, reflecting synchronized activity at 3-4 Hz (delta2), and desynchronized activity at 8-10.5 Hz (alpha1). The delta2 network exhibited a statistically significant (p < 0.001) decrease in characteristic path length and an increase in the mean clustering coefficient. In contrast, the alpha1 network showed opposite trends in these features. The nodes influencing this state were primarily localized in the default mode network (DMN), dorsal attention network (DAN), visual network (VIS), and thalami. In conclusion, the coupling of two networks defined the pre-interictal state in IGEs. This state might be considered as a favorable condition for the generation of interictal GSWDs.

3.
JMIR Form Res ; 6(11): e36933, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36197836

RESUMO

BACKGROUND: The recent COVID-19 pandemic has highlighted the weaknesses of health care systems around the world. In the effort to improve the monitoring of cases admitted to emergency departments, it has become increasingly necessary to adopt new innovative technological solutions in clinical practice. Currently, the continuous monitoring of vital signs is only performed in patients admitted to the intensive care unit. OBJECTIVE: The study aimed to develop a smart system that will dynamically prioritize patients through the continuous monitoring of vital signs using a wearable biosensor device and recording of meaningful clinical records and estimate the likelihood of deterioration of each case using artificial intelligence models. METHODS: The data for the study were collected from the emergency department and COVID-19 inpatient unit of the Hippokration General Hospital of Thessaloniki. The study was carried out in the framework of the COVID-X H2020 project, which was funded by the European Union. For the training of the neural network, data collection was performed from COVID-19 cases hospitalized in the respective unit. A wearable biosensor device was placed on the wrist of each patient, which recorded the primary characteristics of the visual signal related to breathing assessment. RESULTS: A total of 157 adult patients diagnosed with COVID-19 were recruited. Lasso penalty function was used for selecting 18 out of 48 predictors and 2 random forest-based models were implemented for comparison. The high overall performance was maintained, if not improved, by feature selection, with random forest achieving accuracies of 80.9% and 82.1% when trained using all predictors and a subset of them, respectively. Preliminary results, although affected by pandemic limitations and restrictions, were promising regarding breathing pattern recognition. CONCLUSIONS: This study represents a novel approach that involves the use of machine learning methods and Edge artificial intelligence to assist the prioritization and continuous monitoring procedures of patients with COVID-19 in health departments. Although initial results appear to be promising, further studies are required to examine its actual effectiveness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA