Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
2.
Genome Biol ; 24(1): 152, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37370129

RESUMO

BACKGROUND: Platelets and erythrocytes constitute over 95% of all hematopoietic stem cell output. However, the clonal dynamics of HSC contribution to these lineages remains largely unexplored. RESULTS: We use lentiviral genetic labeling of mouse hematopoietic stem cells to quantify output from all lineages, nucleate, and anucleate, simultaneously linking these with stem and progenitor cell transcriptomic phenotypes using single-cell RNA-sequencing. We observe dynamic shifts of clonal behaviors through time in same-animal peripheral blood and demonstrate that acute platelet depletion shifts the output of multipotent hematopoietic stem cells to the exclusive production of platelets. Additionally, we observe the emergence of new myeloid-biased clones, which support short- and long-term production of blood cells. CONCLUSIONS: Our approach enables kinetic studies of multi-lineage output in the peripheral blood and transcriptional heterogeneity of individual hematopoietic stem cells. Our results give a unique insight into hematopoietic stem cell reactivation upon platelet depletion and of clonal dynamics in both steady state and under stress.


Assuntos
Plaquetas , Hematopoese , Camundongos , Animais , Linhagem da Célula , Cinética , Células-Tronco Hematopoéticas , Células Clonais , Diferenciação Celular
3.
Genes (Basel) ; 14(5)2023 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-37239390

RESUMO

Diabetic kidney disease (DKD) represents a major global health problem. Accelerated ageing is a key feature of DKD and, therefore, characteristics of accelerated ageing may provide useful biomarkers or therapeutic targets. Harnessing multi-omics, features affecting telomere biology and any associated methylome dysregulation in DKD were explored. Genotype data for nuclear genome polymorphisms in telomere-related genes were extracted from genome-wide case-control association data (n = 823 DKD/903 controls; n = 247 end-stage kidney disease (ESKD)/1479 controls). Telomere length was established using quantitative polymerase chain reaction. Quantitative methylation values for 1091 CpG sites in telomere-related genes were extracted from epigenome-wide case-control association data (n = 150 DKD/100 controls). Telomere length was significantly shorter in older age groups (p = 7.6 × 10-6). Telomere length was also significantly reduced (p = 6.6 × 10-5) in DKD versus control individuals, with significance remaining after covariate adjustment (p = 0.028). DKD and ESKD were nominally associated with telomere-related genetic variation, with Mendelian randomisation highlighting no significant association between genetically predicted telomere length and kidney disease. A total of 496 CpG sites in 212 genes reached epigenome-wide significance (p ≤ 10-8) for DKD association, and 412 CpG sites in 193 genes for ESKD. Functional prediction revealed differentially methylated genes were enriched for Wnt signalling involvement. Harnessing previously published RNA-sequencing datasets, potential targets where epigenetic dysregulation may result in altered gene expression were revealed, useful as potential diagnostic and therapeutic targets for intervention.


Assuntos
Diabetes Mellitus Tipo 1 , Nefropatias Diabéticas , Falência Renal Crônica , Humanos , Idoso , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/genética , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Falência Renal Crônica/genética , Metilação de DNA/genética , Telômero/genética , Telômero/metabolismo
4.
iScience ; 25(8): 104787, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35992086

RESUMO

Despite much progress in developing better drugs, many patients with acute myeloid leukemia (AML) still die within a year of diagnosis. This is partly because it is difficult to identify therapeutic targets that are effective across multiple AML subtypes. One common factor across AML subtypes is the presence of a block in differentiation. Overcoming this block should allow for the identification of therapies that are not dependent on a specific mutation for their efficacy. Here, we used a phenotypic screen to identify compounds that stimulate differentiation in genetically diverse AML cell lines. Lead compounds were shown to decrease tumor burden and to increase survival in vivo. Using multiple complementary target deconvolution approaches, these compounds were revealed to be anti-mitotic tubulin disruptors that cause differentiation by inducing a G2-M mitotic arrest. Together, these results reveal a function for tubulin disruptors in causing differentiation of AML cells.

5.
Cancers (Basel) ; 11(12)2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31861091

RESUMO

High expression of the HOXA cluster correlates with poor clinical outcome in acute myeloid leukemias, particularly those harboring rearrangements of the mixed-lineage-leukemia gene (MLLr). Whilst decreased HOXA expression acts as a readout for candidate experimental therapies, the necessity of the HOXA cluster for leukemia maintenance has not been fully explored. Primary leukemias were generated in hematopoietic stem/progenitor cells from Cre responsive transgenic mice for conditional deletion of the Hoxa locus. Hoxa deletion resulted in reduced proliferation and colony formation in which surviving leukemic cells retained at least one copy of the Hoxa cluster, indicating dependency. Comparative transcriptome analysis of Hoxa wild type and deleted leukemic cells identified a unique gene signature associated with key pathways including transcriptional mis-regulation in cancer, the Fanconi anemia pathway and cell cycle progression. Further bioinformatics analysis of the gene signature identified a number of candidate FDA-approved drugs for potential repurposing in high HOXA expressing cancers including MLLr leukemias. Together these findings support dependency for an MLLr leukemia on Hoxa expression and identified candidate drugs for further therapeutic evaluation.

6.
Haematologica ; 104(11): 2215-2224, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30975913

RESUMO

Somatic mutations in acute myeloid leukemia are acquired sequentially and hierarchically. First, pre-leukemic mutations, such as t(8;21) that encodes AML1-ETO, are acquired within the hematopoietic stem cell (HSC) compartment, while signaling pathway mutations, including KRAS activating mutations, are late events acquired during transformation of leukemic progenitor cells and are rarely detectable in HSC. This raises the possibility that signaling pathway mutations are detrimental to clonal expansion of pre-leukemic HSC. To address this hypothesis, we used conditional genetics to introduce Aml1-ETO and K-RasG12D into murine HSC, either individually or in combination. In the absence of activated Ras, Aml1-ETO-expressing HSC conferred a competitive advantage. However, activated K-Ras had a marked detrimental effect on Aml1-ETO-expressing HSC, leading to loss of both phenotypic and functional HSC. Cell cycle analysis revealed a loss of quiescence in HSC co-expressing Aml1-ETO and K-RasG12D, accompanied by an enrichment in E2F and Myc target gene expression and depletion of HSC self-renewal-associated gene expression. These findings provide a mechanistic basis for the observed absence of KRAS signaling mutations in the pre-malignant HSC compartment.


Assuntos
Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Mutação , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína 1 Parceira de Translocação de RUNX1/genética , Proteína 1 Parceira de Translocação de RUNX1/metabolismo , Animais , Proliferação de Células/genética , Expressão Gênica , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/patologia , Humanos , Camundongos , Camundongos Transgênicos , Modelos Animais , Modelos Biológicos , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/metabolismo
7.
Nature ; 554(7690): 106-111, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29298288

RESUMO

Rare multipotent haematopoietic stem cells (HSCs) in adult bone marrow with extensive self-renewal potential can efficiently replenish all myeloid and lymphoid blood cells, securing long-term multilineage reconstitution after physiological and clinical challenges such as chemotherapy and haematopoietic transplantations. HSC transplantation remains the only curative treatment for many haematological malignancies, but inefficient blood-lineage replenishment remains a major cause of morbidity and mortality. Single-cell transplantation has uncovered considerable heterogeneity among reconstituting HSCs, a finding that is supported by studies of unperturbed haematopoiesis and may reflect different propensities for lineage-fate decisions by distinct myeloid-, lymphoid- and platelet-biased HSCs. Other studies suggested that such lineage bias might reflect generation of unipotent or oligopotent self-renewing progenitors within the phenotypic HSC compartment, and implicated uncoupling of the defining HSC properties of self-renewal and multipotency. Here we use highly sensitive tracking of progenitors and mature cells of the megakaryocyte/platelet, erythroid, myeloid and B and T cell lineages, produced from singly transplanted HSCs, to reveal a highly organized, predictable and stable framework for lineage-restricted fates of long-term self-renewing HSCs. Most notably, a distinct class of HSCs adopts a fate towards effective and stable replenishment of a megakaryocyte/platelet-lineage tree but not of other blood cell lineages, despite sustained multipotency. No HSCs contribute exclusively to any other single blood-cell lineage. Single multipotent HSCs can also fully restrict towards simultaneous replenishment of megakaryocyte, erythroid and myeloid lineages without executing their sustained lymphoid lineage potential. Genetic lineage-tracing analysis also provides evidence for an important role of platelet-biased HSCs in unperturbed adult haematopoiesis. These findings uncover a limited repertoire of distinct HSC subsets, defined by a predictable and hierarchical propensity to adopt a fate towards replenishment of a restricted set of blood lineages, before loss of self-renewal and multipotency.


Assuntos
Linhagem da Célula , Hematopoese , Células-Tronco Hematopoéticas/citologia , Células-Tronco Multipotentes/citologia , Animais , Antígenos CD34 , Linfócitos B/citologia , Plaquetas/citologia , Antígeno CD48/deficiência , Autorrenovação Celular , Células Eritroides/citologia , Feminino , Células-Tronco Hematopoéticas/metabolismo , Masculino , Megacariócitos/citologia , Camundongos , Células-Tronco Multipotentes/metabolismo , Células Mieloides/citologia , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Linfócitos T/citologia
8.
Oncotarget ; 8(40): 67891-67903, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28978082

RESUMO

Several histone deacetylase inhibitors including Vorinostat have received FDA approval for the treatment of haematological malignancies. However, data from these trials indicate that Vorinostat has limited efficacy as a monotherapy, prompting the need for rational design of combination therapies. A number of epi-sensitised pathways, including sonic hedgehog (SHH), were identified in AML cells by integration of global patterns of histone H3 lysine 9 (H3K9) acetylation with transcriptomic analysis following Vorinostat-treatment. Direct targeting of the SHH pathway with SANT-1, following Vorinostat induced epi-sensitisation, resulted in synergistic cell death of AML cells. In addition, xenograft studies demonstrated that combination therapy induced a marked reduction in leukemic burden compared to control or single agents. Together, the data supports epi-sensitisation as a potential component of the strategy for the rational development of combination therapies in AML.

9.
Oncotarget ; 8(31): 51429-51446, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28881658

RESUMO

Despite advancements in cancer therapeutics, acute myeloid leukemia patients over 60 years old have a 5-year survival rate of less than 8%. In an attempt to improve this, epigenetic modifying agents have been combined as therapies in clinical studies. In particular combinations with Decitabine and Vorinostat have had varying degrees of efficacy. This study therefore aimed to understand the underlying molecular mechanisms of these agents to identify potential rational epi-sensitized combinations. Combined Decitabine-Vorinostat treatment synergistically decreased cell proliferation, induced apoptosis, enhanced acetylation of histones and further decreased DNMT1 protein with HL-60 cells showing a greater sensitivity to the combined treatment than OCI-AML3. Combination therapy led to reprogramming of unique target genes including AXL, a receptor tyrosine kinase associated with cell survival and a poor prognosis in AML, which was significantly upregulated following treatment. Therefore targeting AXL following epi-sensitization with Decitabine and Vorinostat may be a suitable triple combination. To test this, cells were treated with a novel triple combination therapy including BGB324, an AXL specific inhibitor. Triple combination increased the sensitivity of OCI-AML3 cells to Decitabine and Vorinostat as shown through viability assays and significantly extended the survival of mice transplanted with pretreated OCI-AML3 cells, while bioluminescence imaging showed the decrease in disease burden following triple combination treatment. Further investigation is required to optimize this triple combination, however, these results suggest that AXL is a potential marker of response to Decitabine-Vorinostat combination treatment and offers a new avenue of epigenetic combination therapies for acute myeloid leukemia.

10.
Oncotarget ; 7(45): 73448-73461, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27612428

RESUMO

Development of anti-cancer drugs towards clinical application is costly and inefficient. Large screens of drugs, efficacious for non-cancer disease, are currently being used to identify candidates for repurposing based on their anti-cancer properties. Here, we show that low-dose salinomycin, a coccidiostat ionophore previously identified in a breast cancer screen, has anti-leukemic efficacy. AML and MLLr cell lines, primary cells and patient samples were sensitive to submicromolar salinomycin. Most strikingly, colony formation of normal hematopoietic cells was unaffected by salinomycin, demonstrating a lack of hemotoxicity at the effective concentrations. Furthermore, salinomycin treatment of primary cells resulted in loss of leukemia repopulation ability following transplantation, as demonstrated by extended recipient survival compared to controls. Bioinformatic analysis of a 17-gene signature identified and validated in primary MLLr cells, uncovered immunomodulatory pathways, hubs and protein interactions as potential transducers of low dose salinomycin treatment. Additionally, increased protein expression of p62/Sqstm1, encoded for by one of the 17 signature genes, demonstrates a role for salinomycin in aggresome/vesicle formation indicative of an autophagic response.Together, the data support the efficacy of salinomycin as an anti-leukemic at non-hemotoxic concentrations. Further investigation alone or in combination with other therapies is warranted for future clinical trial.


Assuntos
Antineoplásicos/administração & dosagem , Piranos/administração & dosagem , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Leucemia Aguda Bifenotípica/genética , Leucemia Aguda Bifenotípica/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo
11.
Methods Mol Biol ; 1196: 349-70, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25151174

RESUMO

Drug discovery and development are often hampered by lack of target identification and clinical tractability. Repurposing of approved drugs to life-threatening diseases such as leukemia is emerging as a promising alternative approach. Connectivity mapping systems link approved drugs with disease-related gene signatures. Relevant preclinical models provide essential tools for system validation and proof-of-concept studies. Herein we describe procedures aimed at generating disease-based gene signatures and applying them to established cross-referencing databases of potential candidate drugs. As a proof of principle, we present the identification of Entinostat as a candidate drug for the treatment of HOX-TALE-related leukemia.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Leucemia/genética , Animais , Antineoplásicos/administração & dosagem , Benzamidas/administração & dosagem , Benzamidas/farmacologia , Linhagem Celular Tumoral , Bases de Dados Genéticas , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Perfilação da Expressão Gênica , Inibidores de Histona Desacetilases/administração & dosagem , Inibidores de Histona Desacetilases/farmacologia , Proteínas de Homeodomínio/metabolismo , Humanos , Leucemia/tratamento farmacológico , Leucemia/metabolismo , Leucemia/patologia , Camundongos , Piridinas/administração & dosagem , Piridinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Dev Dyn ; 243(1): 172-81, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24307265

RESUMO

BACKGROUND: Hematopoiesis is a paradigm for developmental processes, hierarchically organized, with stem cells at its origin. Hematopoietic stem cells (HSCs) replenish progenitor and precursor cells of multiple lineages, which normally differentiate into short-lived mature circulating cells. Hematopoiesis has provided insight into the molecular basis of tissue homeostasis and malignancy. Malignant hematopoiesis, in particular acute myeloid leukemia (AML), results from impaired development or differentiation of HSCs and progenitors. Co-overexpression of HOX and TALE genes, particularly the HOXA cluster and MEIS1, is associated with AML. Clinically relevant models of AML are required to advance drug development for an aging patient cohort. RESULTS: Molecular analysis identified altered gene, microRNA, and protein expression in HOXA9/Meis1 leukemic bone marrow compared to normal controls. A candidate drug screen identified the c-Met inhibitor SU11274 for further analysis. Altered cell cycle status, apoptosis, differentiation, and impaired colony formation were shown for SU11274 in AML cell lines and primary leukemic bone marrow. CONCLUSIONS: The clonal HOXA9/Meis1 AML model is amenable to drug screening analysis. The data presented indicate that human AML cells respond in a similar manner to the HOXA9/Meis1 cells, indicating pre-clinical relevance of the mouse model.


Assuntos
Proteínas de Homeodomínio/metabolismo , Indóis/uso terapêutico , Leucemia Mieloide Aguda/metabolismo , Proteínas de Neoplasias/metabolismo , Piperazinas/uso terapêutico , Proteínas Proto-Oncogênicas c-met/metabolismo , Sulfonamidas/uso terapêutico , Animais , Modelos Animais de Doenças , Proteínas de Homeodomínio/genética , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Camundongos , MicroRNAs/genética , Proteína Meis1 , Proteínas de Neoplasias/genética , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/genética
13.
Stem Cells ; 31(7): 1434-45, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23592435

RESUMO

The incidence of refractory acute myeloid leukemia (AML) is on the increase due in part to an aging population that fails to respond to traditional therapies. High throughput genomic analysis promises better diagnosis, prognosis, and therapeutic intervention based on improved patient stratification. Relevant preclinical models are urgently required to advance drug development in this area. The collaborating oncogenes, HOXA9 and MEIS1, are frequently co-overexpressed in cytogenetically normal AML (CN-AML), and a conditional transplantation mouse model was developed that demonstrated oncogene dependency and expression levels comparable to CN-AML patients. Integration of gene signatures obtained from the mouse model and a cohort of CN-AML patients using statistically significant connectivity map analysis identified Entinostat as a drug with the potential to alter the leukemic condition toward the normal state. Ex vivo treatment of leukemic cells, but not age-matched normal bone marrow controls, with Entinostat validated the gene signature and resulted in reduced viability in liquid culture, impaired colony formation, and loss of the leukemia initiating cell. Furthermore, in vivo treatment with Entinostat resulted in prolonged survival of leukemic mice. This study demonstrates that the HDAC inhibitor Entinostat inhibits disease maintenance and prolongs survival in a clinically relevant murine model of cytogenetically normal AML.


Assuntos
Benzamidas/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Piridinas/farmacologia , Animais , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Imunofenotipagem , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos C57BL
14.
Haematologica ; 98(8): 1216-25, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23539541

RESUMO

The cytogenetically normal subtype of acute myeloid leukemia is associated with an intermediate risk which complicates therapeutic options. Lower overall HOX/TALE expression appears to correlate with more favorable prognosis/better response to treatment in some leukemias and solid cancer. The functional significance of the associated gene expression and response to chemotherapy is not known. Three independent microarray datasets obtained from large cohorts of patients along with quantitative polymerase chain reaction validation were used to identify a four-gene HOXA/TALE signature capable of prognostic stratification. Biochemical analysis was used to identify interactions between the four encoded proteins and targeted knockdown used to examine the functional importance of sustained expression of the signature in leukemia maintenance and response to chemotherapy. An 11 HOXA/TALE code identified in an intermediate-risk group of patients (n=315) compared to a group with a favorable risk (n=105) was reduced to a four-gene signature of HOXA6, HOXA9, PBX3 and MEIS1 by iterative analysis of independent platforms. This signature maintained the favorable/intermediate risk partition and where applicable, correlated with overall survival in cytogenetically normal acute myeloid leukemia. We further showed that cell growth and function are dependent on maintained levels of these core genes and that direct targeting of HOXA/PBX3 sensitizes cytogenetically normal acute myeloid leukemia cells to standard chemotherapy. Together the data support a key role for HOXA/TALE in cytogenetically normal acute myeloid leukemia and demonstrate that targeting of clinically significant HOXA/PBX3 elements may provide therapeutic benefit to patients with this subtype of leukemia.


Assuntos
Antineoplásicos/uso terapêutico , Análise Citogenética/métodos , Proteínas de Homeodomínio/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Proteínas Proto-Oncogênicas/genética , Antineoplásicos/farmacologia , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Técnicas de Silenciamento de Genes/métodos , Proteínas de Homeodomínio/antagonistas & inibidores , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Proteína Meis1 , Proteínas de Neoplasias/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA