Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
IEEE Trans Cybern ; 52(10): 10000-10013, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33760749

RESUMO

Thanks to large-scale labeled training data, deep neural networks (DNNs) have obtained remarkable success in many vision and multimedia tasks. However, because of the presence of domain shift, the learned knowledge of the well-trained DNNs cannot be well generalized to new domains or datasets that have few labels. Unsupervised domain adaptation (UDA) studies the problem of transferring models trained on one labeled source domain to another unlabeled target domain. In this article, we focus on UDA in visual emotion analysis for both emotion distribution learning and dominant emotion classification. Specifically, we design a novel end-to-end cycle-consistent adversarial model, called CycleEmotionGAN++. First, we generate an adapted domain to align the source and target domains on the pixel level by improving CycleGAN with a multiscale structured cycle-consistency loss. During the image translation, we propose a dynamic emotional semantic consistency loss to preserve the emotion labels of the source images. Second, we train a transferable task classifier on the adapted domain with feature-level alignment between the adapted and target domains. We conduct extensive UDA experiments on the Flickr-LDL and Twitter-LDL datasets for distribution learning and ArtPhoto and Flickr and Instagram datasets for emotion classification. The results demonstrate the significant improvements yielded by the proposed CycleEmotionGAN++ compared to state-of-the-art UDA approaches.


Assuntos
Redes Neurais de Computação , Semântica , Emoções , Humanos
2.
IEEE Trans Pattern Anal Mach Intell ; 44(10): 6729-6751, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34214034

RESUMO

Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges - the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.


Assuntos
Algoritmos , Emoções , Processamento de Imagem Assistida por Computador
3.
IEEE Trans Neural Netw Learn Syst ; 33(2): 473-493, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33095718

RESUMO

Large-scale labeled training datasets have enabled deep neural networks to excel across a wide range of benchmark vision tasks. However, in many applications, it is prohibitively expensive and time-consuming to obtain large quantities of labeled data. To cope with limited labeled training data, many have attempted to directly apply models trained on a large-scale labeled source domain to another sparsely labeled or unlabeled target domain. Unfortunately, direct transfer across domains often performs poorly due to the presence of domain shift or dataset bias. Domain adaptation (DA) is a machine learning paradigm that aims to learn a model from a source domain that can perform well on a different (but related) target domain. In this article, we review the latest single-source deep unsupervised DA methods focused on visual tasks and discuss new perspectives for future research. We begin with the definitions of different DA strategies and the descriptions of existing benchmark datasets. We then summarize and compare different categories of single-source unsupervised DA methods, including discrepancy-based methods, adversarial discriminative methods, adversarial generative methods, and self-supervision-based methods. Finally, we discuss future research directions with challenges and possible solutions.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Adaptação Fisiológica , Benchmarking
4.
IEEE Trans Med Imaging ; 31(6): 1250-62, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22345529

RESUMO

We present l1-SPIRiT, a simple algorithm for auto calibrating parallel imaging (acPI) and compressed sensing (CS) that permits an efficient implementation with clinically-feasible runtimes. We propose a CS objective function that minimizes cross-channel joint sparsity in the wavelet domain. Our reconstruction minimizes this objective via iterative soft-thresholding, and integrates naturally with iterative self-consistent parallel imaging (SPIRiT). Like many iterative magnetic resonance imaging reconstructions, l1-SPIRiT's image quality comes at a high computational cost. Excessively long runtimes are a barrier to the clinical use of any reconstruction approach, and thus we discuss our approach to efficiently parallelizing l1-SPIRiT and to achieving clinically-feasible runtimes. We present parallelizations of l1-SPIRiT for both multi-GPU systems and multi-core CPUs, and discuss the software optimization and parallelization decisions made in our implementation. The performance of these alternatives depends on the processor architecture, the size of the image matrix, and the number of parallel imaging channels. Fundamentally, achieving fast runtime requires the correct trade-off between cache usage and parallelization overheads. We demonstrate image quality via a case from our clinical experimentation, using a custom 3DFT spoiled gradient echo (SPGR) sequence with up to 8× acceleration via Poisson-disc undersampling in the two phase-encoded directions.


Assuntos
Algoritmos , Compressão de Dados/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Estudos de Viabilidade , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise de Ondaletas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA