Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-35886147

RESUMO

Although discrete maternal exercise and polyunsaturated fatty acid (PUFA) supplementation individually are beneficial for infant body composition, the effects of exercise and PUFA during pregnancy on infant body composition have not been studied. This study evaluated the body composition of infants born to women participating in a randomized control exercise intervention study. Participants were randomized to aerobic exercise (n = 25) or control (stretching and breathing) groups (n = 10). From 16 weeks of gestation until delivery, the groups met 3×/week. At 16 and 36 weeks of gestation, maternal blood was collected and analyzed for Docosahexaenoic Acid (DHA) and Eicosapentaenoic Acid (EPA). At 1 month postnatal, infant body composition was assessed via skinfolds (SFs) and circumferences. Data from 35 pregnant women and infants were analyzed via t-tests, correlations, and regression. In a per protocol analysis, infants born to aerobic exercisers exhibited lower SF thicknesses of triceps (p = 0.008), subscapular (p = 0.04), SF sum (p = 0.01), and body fat (BF) percentage (%) (p = 0.006) compared with controls. After controlling for 36-week DHA and EPA levels, exercise dose was determined to be a negative predictor for infant skinfolds of triceps (p = 0.001, r2 = 0.27), subscapular (p = 0.008, r2 = 0.19), SF sum (p = 0.001, r2 = 0.28), mid-upper arm circumference (p = 0.049, r2 = 0.11), and BF% (p = 0.001, r2 = 0.32). There were no significant findings for PUFAs and infant measures: during pregnancy, exercise dose, but not blood DHA or EPA levels, reduces infant adiposity.


Assuntos
Ácido Eicosapentaenoico , Ácidos Graxos Ômega-3 , Composição Corporal , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos , Exercício Físico , Ácidos Graxos Insaturados , Feminino , Humanos , Lactente , Gravidez
2.
Artigo em Inglês | MEDLINE | ID: mdl-35329235

RESUMO

Exercise and polyunsaturated fatty acid (PUFA) supplementation independently improve lipid profiles. The influence of both exercise and PUFAs on lipids during pregnancy remains unknown. This study evaluated exercise, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) concentrations on lipids during pregnancy. Participants were randomized to aerobic exercise or control groups. From 16 weeks gestation until delivery, groups met 3x/week; exercisers performed moderate-intensity aerobic activity, controls performed low-intensity stretching and breathing. At 16 and 36 weeks' gestation, maternal blood was analyzed for lipids (total cholesterol (TC), high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglycerides (TG)), DHA and EPA. In intent-to-treat analysis, the aerobic group (n = 20), relative to controls (n = 10), exhibited a higher HDL change across gestation (p = 0.03). In a per protocol analysis, the aerobic group, relative to controls, exhibited 21.2% lower TG at 36 weeks (p = 0.04). After controlling for 36-week DHA and EPA, exercise dose predicts 36 weeks' TG (F (1,36) = 6.977, p = 0.012, r2 = 0.16). Aerobic exercise normalizes late pregnancy TG. During pregnancy, exercise dose controls the rise in TG, therefore maintaining normal levels. DHA and EPA do not have measurable effects on lipids. Regardless of PUFA levels, exercise at recommended levels maintains appropriate TG levels in pregnant women. Normal TG levels are critical for pregnancy outcomes, and further studies are warranted to investigate this association in broader populations.


Assuntos
Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico , Exercício Físico , Feminino , Humanos , Lipoproteínas HDL , Gravidez , Triglicerídeos
3.
Elife ; 102021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34132194

RESUMO

Currently there is great interest in targeting mitochondrial oxidative phosphorylation (OXPHOS) in cancer. However, notwithstanding the targeting of mutant dehydrogenases, nearly all hopeful 'mito-therapeutics' cannot discriminate cancerous from non-cancerous OXPHOS and thus suffer from a limited therapeutic index. Using acute myeloid leukemia (AML) as a model, herein, we leveraged an in-house diagnostic biochemical workflow to identify 'actionable' bioenergetic vulnerabilities intrinsic to cancerous mitochondria. Consistent with prior reports, AML growth and proliferation was associated with a hyper-metabolic phenotype which included increases in basal and maximal respiration. However, despite having nearly 2-fold more mitochondria per cell, clonally expanding hematopoietic stem cells, leukemic blasts, as well as chemoresistant AML were all consistently hallmarked by intrinsic OXPHOS limitations. Remarkably, by performing experiments across a physiological span of ATP free energy, we provide direct evidence that leukemic mitochondria are particularly poised to consume ATP. Relevant to AML biology, acute restoration of oxidative ATP synthesis proved highly cytotoxic to leukemic blasts, suggesting that active OXPHOS repression supports aggressive disease dissemination in AML. Together, these findings argue against ATP being the primary output of leukemic mitochondria and provide proof-of-principle that restoring, rather than disrupting, OXPHOS may represent an untapped therapeutic avenue for combatting hematological malignancy and chemoresistance.


Assuntos
Metabolismo Energético/fisiologia , Leucemia Mieloide Aguda , Fosforilação Oxidativa , Trifosfato de Adenosina/metabolismo , Adolescente , Adulto , Idoso , Feminino , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/fisiopatologia , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Adulto Jovem
4.
Antioxid Redox Signal ; 35(4): 235-251, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33066717

RESUMO

Aims: Catecholamine metabolism via monoamine oxidase (MAO) contributes to cardiac injury in models of ischemia and diabetes, but the pathogenic mechanisms involved are unclear. MAO deaminates norepinephrine (NE) and dopamine to produce H2O2 and highly reactive "catecholaldehydes," which may be toxic to mitochondria due to the localization of MAO to the outer mitochondrial membrane. We performed a comprehensive analysis of catecholamine metabolism and its impact on mitochondrial energetics in atrial myocardium obtained from patients with and without type 2 diabetes. Results: Content and maximal activity of MAO-A and MAO-B were higher in the myocardium of patients with diabetes and they were associated with body mass index. Metabolomic analysis of atrial tissue from these patients showed decreased catecholamine levels in the myocardium, supporting an increased flux through MAOs. Catecholaldehyde-modified protein adducts were more abundant in myocardial tissue extracts from patients with diabetes and were confirmed to be MAO dependent. NE treatment suppressed mitochondrial ATP production in permeabilized myofibers from patients with diabetes in an MAO-dependent manner. Aldehyde dehydrogenase (ALDH) activity was substantially decreased in atrial myocardium from these patients, and metabolomics confirmed lower levels of ALDH-catalyzed catecholamine metabolites. Proteomic analysis of catechol-modified proteins in isolated cardiac mitochondria from these patients identified >300 mitochondrial proteins to be potential targets of these unique carbonyls. Innovation and Conclusion: These findings illustrate a unique form of carbonyl toxicity driven by MAO-mediated metabolism of catecholamines, and they reveal pathogenic factors underlying cardiometabolic disease. Importantly, they suggest that pharmacotherapies targeting aldehyde stress and catecholamine metabolism in heart may be beneficial in patients with diabetes and cardiac disease. Antioxid. Redox Signal. 35, 235-251.


Assuntos
Catecolaminas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Mitocôndrias Cardíacas/metabolismo , Aldeído Desidrogenase/metabolismo , Humanos , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , Oxirredução , Fosforilação
5.
Sci Rep ; 10(1): 17599, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33077793

RESUMO

Human disease pathophysiology commonly involves metabolic disruption at both the cellular and subcellular levels. Isolated mitochondria are a powerful model for separating global cellular changes from intrinsic mitochondrial alterations. However, common laboratory practices for isolating mitochondria (e.g., differential centrifugation) routinely results in organelle preparations with variable mitochondrial purity. To overcome this issue, we developed a mass spectrometry-based method that quantitatively evaluates sample-specific percent mitochondrial enrichment. Sample-specific mitochondrial enrichment was then used to correct various biochemical readouts of mitochondrial function to a 'fixed' amount of mitochondrial protein, thus allowing for intrinsic mitochondrial bioenergetics, relative to the underlying proteome, to be assessed across multiple mouse tissues (e.g., heart, brown adipose, kidney, liver). Our results support the use of mitochondrial-targeted nLC-MS/MS as a method to quantitate mitochondrial enrichment on a per-sample basis, allowing for unbiased comparison of functional parameters between populations of mitochondria isolated from metabolically distinct tissues. This method can easily be applied across multiple experimental settings in which intrinsic shifts in the mitochondrial network are suspected of driving a given physiological or pathophysiological outcome.


Assuntos
Tecido Adiposo Marrom/metabolismo , Metabolismo Energético/fisiologia , Rim/metabolismo , Fígado/metabolismo , Mitocôndrias/metabolismo , Miocárdio/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Citrato (si)-Sintase/metabolismo , Espectrometria de Massas , Camundongos , Consumo de Oxigênio/fisiologia , Proteoma/metabolismo
6.
Sci Rep ; 10(1): 3603, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32107436

RESUMO

The mitochondrial mutator mouse is a well-established model of premature aging. In addition to accelerated aging, these mice develop hypertrophic cardiomyopathy at ~13 months of age, presumably due to overt mitochondrial dysfunction. Despite evidence of bioenergetic disruption within heart mitochondria, there is little information about the underlying changes to the mitochondrial proteome that either directly underly or predict respiratory insufficiency in mutator mice. Herein, nLC-MS/MS was used to interrogate the mitochondria-enriched proteome of heart and skeletal muscle of aged mutator mice. The mitochondrial proteome from heart tissue was then correlated with respiratory conductance data to identify protein biomarkers of respiratory insufficiency. The majority of downregulated proteins in mutator mitochondria were subunits of respiratory complexes I and IV, including both nuclear and mitochondrial-encoded proteins. Interestingly, the mitochondrial-encoded complex V subunits, were unchanged or upregulated in mutator mitochondria, suggesting a robustness to mtDNA mutation. Finally, the proteins most strongly correlated with respiratory conductance were PPM1K, NDUFB11, and C15orf61. These results suggest that mitochondrial mutator mice undergo a specific loss of mitochondrial complexes I and IV that limit their respiratory function independent of an upregulation of complex V. Additionally, the role of PPM1K in responding to mitochondrial stress warrants further exploration.


Assuntos
Cardiomiopatia Hipertrófica/metabolismo , Mitocôndrias Cardíacas/metabolismo , Insuficiência Respiratória/metabolismo , Senilidade Prematura/genética , Animais , Biomarcadores/metabolismo , Cardiomiopatia Hipertrófica/genética , DNA Polimerase gama/genética , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons/metabolismo , Metabolismo Energético , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/genética , Mutação/genética , Fenótipo , Proteômica , Insuficiência Respiratória/genética , Frações Subcelulares/metabolismo
7.
Mol Metab ; 31: 55-66, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31918922

RESUMO

OBJECTIVE: Phosphatidylethanolamine methyltransferase (PEMT) generates phosphatidylcholine (PC), the most abundant phospholipid in the mitochondria and an important acyl chain donor for cardiolipin (CL) biosynthesis. Mice lacking PEMT (PEMTKO) are cold-intolerant when fed a high-fat diet (HFD) due to unclear mechanisms. The purpose of this study was to determine whether PEMT-derived phospholipids are important for the function of uncoupling protein 1 (UCP1) and thus for maintenance of core temperature. METHODS: To test whether PEMT-derived phospholipids are important for UCP1 function, we examined cold-tolerance and brown adipose (BAT) mitochondria from PEMTKO mice with or without HFD feeding. We complemented these studies with experiments on mice lacking functional CL due to tafazzin knockdown (TAZKD). We generated several conditional mouse models to study the tissue-specific roles of PEMT, including mice with BAT-specific knockout of PEMT (PEMT-BKO). RESULTS: Chow- and HFD-fed PEMTKO mice completely lacked UCP1 protein in BAT, despite a lack of difference in mRNA levels, and the mice were accordingly cold-intolerant. While HFD-fed PEMTKO mice exhibited reduced mitochondrial CL content, this was not observed in chow-fed PEMTKO mice or TAZKD mice, indicating that the lack of UCP1 was not attributable to CL deficiency. Surprisingly, the PEMT-BKO mice exhibited normal UCP1 protein levels. Knockout of PEMT in the adipose tissue (PEMT-AKO), liver (PEMT-LKO), or skeletal muscle (PEMT-MKO) also did not affect UCP1 protein levels, suggesting that lack of PEMT in other non-UCP1-expressing cells communicates to BAT to suppress UCP1. Instead, we identified an untranslated UCP1 splice variant that was triggered during the perinatal period in the PEMTKO mice. CONCLUSIONS: PEMT is required for UCP1 splicing that yields functional protein. This effect is derived by PEMT in nonadipocytes that communicates to BAT during embryonic development. Future research will focus on identifying the non-cell-autonomous PEMT-dependent mechanism of UCP1 splicing.


Assuntos
Fosfatidiletanolamina N-Metiltransferase/metabolismo , Proteína Desacopladora 1/genética , Processamento Alternativo/genética , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatidiletanolamina N-Metiltransferase/deficiência , Termogênese , Proteína Desacopladora 1/metabolismo
8.
J Mol Cell Cardiol ; 121: 94-102, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30008435

RESUMO

Barth Syndrome (BTHS) is an X-linked recessive disorder characterized by cardiomyopathy and muscle weakness. The underlying cause of BTHS is a mutation in the tafazzin (TAZ) gene, a key enzyme of cardiolipin biosynthesis. The lack of CL arising from loss of TAZ function results in destabilization of the electron transport system, promoting oxidative stress that is thought to contribute to development of cardioskeletal myopathy. Indeed, in vitro studies demonstrate that mitochondria-targeted antioxidants improve contractile capacity in TAZ-deficient cardiomyocytes. The purpose of the present study was to determine if resolving mitochondrial oxidative stress would be sufficient to prevent cardiomyopathy and skeletal myopathy in vivo using a mouse model of BTHS. To this end we crossed mice that overexpress catalase in the mitochondria (MCAT mice) with TAZ-deficient mice (TAZKD) to produce TAZKD mice that selectively overexpress catalase in the mitochondria (TAZKD+MCAT mice). TAZKD+MCAT mice exhibited decreased mitochondrial H2O2 emission and lipid peroxidation compared to TAZKD littermates, indicating decreased oxidative stress. Despite the improvements in oxidative stress, TAZKD+MCAT mice developed cardiomyopathy and mild muscle weakness similar to TAZKD littermates. These findings indicate that resolving oxidative stress is not sufficient to suppress cardioskeletal myopathy associated with BTHS.


Assuntos
Síndrome de Barth/genética , Cardiomiopatias/genética , Catalase/genética , Estresse Oxidativo/genética , Fatores de Transcrição/genética , Aciltransferases , Animais , Antioxidantes/administração & dosagem , Síndrome de Barth/tratamento farmacológico , Síndrome de Barth/fisiopatologia , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/patologia , Catalase/antagonistas & inibidores , Modelos Animais de Doenças , Humanos , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/genética , Mitocôndrias/enzimologia , Mutação , Contração Miocárdica/genética , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA