Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Insect Sci ; 24(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387433

RESUMO

The spotted amber ladybird, Hippodamia variegata (Goeze) (Coleoptera: Coccinellidae), is known to be a potent predator of aphids, psyllids, whiteflies, mealybugs, and some butterfly species. This ladybeetle overwinters in the diapausing adult stage. The current study aimed to evaluate the impact of diapause on the energy resources and cuticular hydrocarbons (CHCs) of the female ladybeetle, specifically comparing the changes in glycogen, lipid, and protein contents, and CHCs profile of diapausing and non-diapausing adults. In this study, gas chromatography-mass was used to analyze whole-body extracts of the beetles. Results showed no significant differences between the amount of glycogen, lipid, and protein contents of diapausing and non-diapausing ladybeetle. The CHCs profile of H. variegata consisted of 24 hydrocarbons categorized into 2 groups: linear aliphatic hydrocarbons (n-alkanes) and methyl-branched hydrocarbons (17 molecules), as well as unsaturated cyclic compounds (7 molecules). The n-alkanes, with 14 compounds, were identified as the primary constituents of the CHCs of the ladybeetle. Six molecules were common to non-diapausing and diapausing beetles, 5 were exclusive to non-diapausing beetles, and 13 were exclusive to diapausing beetles. Moreover, we noted a significant difference in the quantity and quality of CHCs between diapausing and non-diapausing beetles, with diapausing beetles synthesizing more CHCs with longer chains. This disparity in CHC profiles was concluded to be an adaptation of H. variegata to survive harsh environmental conditions during diapause.


Assuntos
Besouros , Diapausa de Inseto , Diapausa , Feminino , Animais , Hidrocarbonetos , Besouros/fisiologia , Alcanos , Glicogênio , Lipídeos
2.
Front Physiol ; 14: 1323701, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38179144

RESUMO

The variegated ladybug, Hippodamia variegata is one of the most effective predators of various pests that hibernate as adult beetles. During the overwintering period from April 2021 to March 2022, we examined the supercooling point (SCP), cold tolerance, and physiological adaptations of beetles in Kerman, Iran. The beetles exhibited their greatest cold tolerance (63.4% after 24 h at -5°C) when their SCP was lowest (-23.2°C). Conversely, from April to October 2021, the SCP reached its peak (approximately -13.0°C), while cold tolerance was at its lowest level (6.7% after 24 h at -5°C). Cryoprotectant content (trehalose, glycerol, and glucose) was at its highest level in September (11.15, 10.82, and 6.31 mg/g, respectively). The critical thermal minimum (CTmin) reached its lowest point of -2.2°C in January and February. The lowest point of the lower lethal temperature (LLT) coincided with the lowest level of the SCP and the highest level of cold tolerance (in February, LT50 = -5.3°C, SCP = -23.2°C, and survival = 77.78% at -4°C/24 h). Chill-coma recovery time (CCRT) was examined at five different temperatures and two different exposure durations. The CCRT increased with a decrease in exposure temperature and time (68.0 s at -2°C after 2 h and 102.0 s at -2°C after 4 h). As the majority of the overwintering beetle's mortality occurred at temperatures significantly higher than SCP, the adults of H. variegata are chill-susceptible insects that primarily rely on a depressed supercooling point to cope with unfavorable conditions during the overwintering period.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA