RESUMO
Visceral leishmaniasis (VL), a parasitic, poverty-linked, neglected disease, is endemic across multiple regions of the world and fatal if untreated. There is an urgent need for a better and more affordable treatment for VL. DNDI-6148 is a promising drug candidate being evaluated for the treatment of VL; however, the current process for producing the key intermediate of DNDI-6148, 6-amino-1-hydroxy-2,1-benzoxaborolane, is expensive and difficult to scale up. Herein, we describe two practical approaches to synthesizing 6-amino-1-hydroxy-2,1-benzoxaborolane from inexpensive and readily available raw materials. Starting with 4-tolunitrile, the first approach is a five-step sequence involving a Hofmann rearrangement, resulting in an overall yield of 40%. The second approach utilizes 2-methyl-5-nitroaniline as the starting material and features borylation of aniline and continuous flow hydrogenation as the key steps, with an overall yield of 46%. Both routes bypass the nitration of 1-hydroxy-2,1-benzoxaborolane, which is challenging and expensive to scale. In particular, the second approach is more practical and scalable because of the mild operating conditions and facile isolation process.
RESUMO
MMV693183 is a promising antimalarial drug candidate that works for uncomplicated malaria treatment and resistance management. Herein, we report an efficient and highly regioselective synthesis of MMV693183. This novel synthetic method highlights a three-step route with an overall yield of 46% from readily available starting materials. The key to the success lies in (1) utilizing the subtle difference of the two amino groups in the starting material (S)-propane-1,2-diamine dihydrochloride without amino protection and (2) identifying the L-(+)-tartaric acid as the counter acid for the organic salt formation, yielding the desired regioisomer up to 100:0. The efficient and scalable three-step protocol operates under mild conditions with a high chemo/regioselectivity, providing effective access to MMV693183.
RESUMO
Bedaquiline is a crucial medicine in the global fight against tuberculosis, yet its high price places it out of reach for many patients. Herein, we describe improvements to the key industrial lithiation-addition sequence that enable a higher yielding and therefore more economical synthesis of bedaquiline. Prioritization of mechanistic understanding and multi-lab reproducibility led to optimized reaction conditions that feature an unusual base-salt pairing and afford a doubling of the yield of racemic bedaquiline. We anticipate that implementation of these improvements on manufacturing scale will be facile, thereby substantially increasing the accessibility of this essential medication.
Assuntos
Mycobacterium tuberculosis , Tuberculose , Antituberculosos , Diarilquinolinas/uso terapêutico , Humanos , Reprodutibilidade dos Testes , Tuberculose/tratamento farmacológicoRESUMO
An enantioselective synthesis of spiropyrazolone-fused cyclopenta[c]chromen-4-ones is demonstrated via a (3+2) cycloaddition reaction. The reactions of 3-homoacylcoumarins and α,ß-unsaturated pyrazolones in the presence of the cinchona-alkaloid derived hydrogen-bonding catalyst provide aforementioned spiropyrazolone-chromenone adducts bearing five contiguous stereocenters, of which one is the spiro all-carbon quaternary stereocenter in high yields (up to 98%) with good to excellent stereoselectivities (>25:1 dr and up to 99% ee). This one-pot methodology could also be practically demonstrated on a gram-scale with similar efficacy.
Assuntos
Pirazolonas , Compostos de Espiro , Catálise , Reação de Cicloadição , EstereoisomerismoRESUMO
An efficient method for the direct ß-acylation of arylidene pyrazolones and thiazolones with acyl chlorides in the presence of a base catalyzed by organophosphanes is reported. A variety of functionalized 4-arylidene pyrazolone and 5-arylidene thiazolone derivatives were prepared under metal-free and mild conditions via a tandem phospha-Michael addition/O-acylation/intramolecular cyclization/rearrangement sequence. Our mechanistic investigations revealed that the reaction is highly stereospecific to provide exclusively cis-isomers, and the methodology can also be scaled up with similar efficacy.
RESUMO
An efficient method for the diversity-oriented synthesis of spiropentadiene pyrazolones and 1H-oxepino[2,3-c]pyrazoles is reported. The methodology attributes O-acylation of phosphorus zwitterions which were formed by a tandem phospha-1,6-addition of PBu3 to α,ß,γ,δ-unsaturated pyrazolones, further generating betaine intermediates that preferentially resulted in the aforementioned cyclic products in a diversity-oriented manner. The mechanistic investigations revealed that formation of the betaines is the key step to provide the products via an intramolecular Wittig reaction or an unprecedented δ-C-acylation/cyclization/Wittig reaction.
RESUMO
α-Halohydrazones/ketoximes are transformed into trisubstituted pyrazoles/disubstituted isoxazoles by treatment with phosphine, acyl chloride, and a base. Mechanistic investigations revealed the in situ formation of azo/nitroso olefin intermediates which underwent a tandem phospha-Michael/ N- or O-acylation/intramolecular Wittig reaction to afford the heteroarenes in moderate to good yields. Further, proper functionalization of α-haloketoximes and a change of conditions allowed the chemoselective synthesis of chromenone-oximes as well as rearranged isoxazoles, thereby realizing a diversity-oriented synthesis.
RESUMO
The marine metabolite mycalol (1) has a specific inhibitory activity on cells of anaplastic thyroid carcinoma (ATC), a very aggressive and rare cancer that does not have effective conventional therapy. In this study, we describe six new related analogues (2-7) that differ in the length of the terminal alkyl residue and the presence of acetate or 3S-hydroxybutyrate (3S)-3HB as a substituent at C-19. Despite the structural analogies, some of the new members were significantly more cytotoxic than 1 on cell lines derived from human ATC. Structures inclusive of the 2'R,3R,4S,7R,8S,19R absolute configuration were assigned to 2-7 on the basis of detailed spectroscopic analysis, synthesis of different isomers, and application of ECD and Mosher's methods. This work led to the identification of mycalol-578 (3) as the most potent analogue, with an IC50 of 2.3 µM on FRO cells.
Assuntos
Antineoplásicos/farmacologia , Álcoois Graxos/farmacologia , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Álcoois Graxos/química , Humanos , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Poríferos/químicaRESUMO
Syntheses of two 14-membered macrolides Sch-725674 and Gliomasolide C are described here. The first total synthesis of Gliomasolide C, the short synthesis of Sch-725674, and regioselective Wacker oxidation of internal olefin are the highlights of this disclosure. In addition, a key macrocycle with orthogonal functionalities was designed and synthesized on a gram scale for the generation of analogues.
Assuntos
Alcenos/síntese química , Macrolídeos/síntese química , Alcenos/química , Macrolídeos/química , Estrutura Molecular , Oxirredução , EstereoisomerismoRESUMO
Therapeutic options for brain infections caused by pathogens with a reduced sensitivity to drugs are limited. Recent reports on the potential use of linezolid in treating brain infections prompted us to design novel compounds around this scaffold. Herein, we describe the design and synthesis of various oxazolidinone antibiotics with the incorporation of silicon. Our findings in preclinical species suggest that silicon incorporation is highly useful in improving brain exposures. Interestingly, three compounds from this series demonstrated up to a 30-fold higher brain/plasma ratio when compared to linezolid thereby indicating their therapeutic potential in brain associated disorders.