Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36142045

RESUMO

Along with pharmacological applications due to bioactive elements such as flavonoids and glycyrrhizin, licorice has positive influences on the rehabilitation, rejuvenation, and management of salt-affected degraded lands in arid regions. These features made this plant widely appreciated worldwide when climate change is showing detrimental impacts for crop production and food security. However, a growing demand followed by irrational harvesting of wild licorice plants has led to substantial dwindling of its natural habitat. There is an increasing need to protect the plant biodiversity since sustainability can be a problem with wild harvesting. Therefore, it is important to investigate cultivation technologies of licorice under harsh environments, while this plant can adapt to a wide range of climates. Thus, in this review, we studied, analyzed and summarized the literature on licorice cultivation methods counteracting the most common environmental stresses in the Aral Sea region. Particularly, the current knowledge was rationalized regarding on cultivation technologies for alleviating salt stress thereby improving crop production. We also highlighted that future research directions on licorice breeding and genomics that might facilitate to produce more resilient and sustainable licorice genotypes to renovate agricultural productivity under disastrous ecology and climate change of the arid regions. Whereas this area possesses all prerequisite conditions needed for successful cultivation of the alternative cash crop.


Assuntos
Glycyrrhiza , Triterpenos , Flavonoides , Glycyrrhiza/metabolismo , Ácido Glicirrízico/metabolismo , Melhoramento Vegetal , Extratos Vegetais/metabolismo
3.
Front Plant Sci ; 11: 607102, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33365043

RESUMO

The effects of climate change and soil salinization on dryland ecosystems are already widespread, and ensuring food security is a crucial challenge. In this article, we demonstrate changes in growth performance and seed quality of a new high-yielding quinoa genotype (Q5) exposed to sodium chloride (NaCl), sodium sulfate (Na2SO4), and mixed salts (NaCl + Na2SO4). Differential responses to salt stress in growth performance, seed yield, and seed quality were identified. High salinity (mixed Na2SO4 + NaCl) reduces plant height by ∼30%, shoot and root dry weights by ∼29%, head panicle length and panicle weight by 36-43%, and seed yield by 37%, compared with control conditions. However, the 1,000-seed weight changes insignificantly under salinity. High content of essential minerals, such as Fe, Zn, and Ca in quinoa Q5 seeds produced under salinity, gives the Q5 genotype a remarkable advantage for human consumption. Biomarkers detected in our studies show that the content of most essential amino acids is unchanged under salinity. The content of amino acids Pro, Gly, and Ile positively correlates with Na+ concentration in soil and seeds, whereas the content of squalene and most fatty acids negatively correlates. Variation in squalene content under increasing salinity is most likely due to toxic effects of sodium and chlorine ions as a result of the decrease in membrane permeability for ion movement as a protective reaction to an increase in the sodium ion concentration. Low squalene accumulation might also occur to redirect the NADPH cofactor to enhance the biosynthesis of proline in response to salinity, as both syntheses (squalene and proline) require NADPH. This evidence can potentially be used by the food and pharmaceutical industries in the development of new food and health products.

4.
J Agric Food Chem ; 68(52): 15373-15380, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33345538

RESUMO

Weeds are notorious plant species exhibiting a harmful impact on crops. Biological weed control is an efficient and environmentally friendly technique, usually constitutes naturally derived compounds, including bioherbicidal metabolites produced by Streptomyces sp. The isolation and structural identification of phytotoxic compounds from Streptomyces have recently been proposed as an effective way to the discovery of novel bioherbicides. In the screening of bioherbicidal agents, isolated Streptomyces strain KRA17-580 demonstrated significant phytotoxic activity against Digitaria ciliaris. Phylogenetic analysis of the 16S rRNA sequence indicated that isolated KRA17-580 is similar to Streptomyces olivochromogenes. The bacterial culture conditions were optimized for temperature, agitation, and initial pH. Streptomyces strain KRA17-580 showed intense phytotoxic activity and high cell mass at an initial pH of 5.5-7.0, more than 150 rpm, and 25-30 °C. The herbicidal compounds isolated from the culture filtrate of strain KRA17-580 were purified by solvent partition, C18, Sephadex LH20 column chromatography, and high-performance liquid chromatography. By 1D-NMR, 2D-NMR, and electrospray ionization mass spectrometry analysis, the 580-H1 and 580-H2 compounds were identified as a cinnoline-4-carboxamide (MW, 173.0490; C9H7N3O2) and cinnoline-4-carboxylic acid (MW, 174.0503; C9H6N2O2), respectively. Only these two herbicidal compounds showed strong phytotoxic activity against D. ciliaris in foliar applications. However, compound 580-H2 was more phytotoxic than 580-H1 and the toxicity was dose-dependent. The herbicidal metabolite KRA17-580 produced by Streptomyces sp. is a new bioherbicidal candidate that may provide a new lead molecule for more efficient phytotoxic compounds.


Assuntos
Herbicidas/química , Herbicidas/farmacocinética , Streptomyces/química , Streptomyces/metabolismo , Cromatografia Líquida de Alta Pressão , Digitaria/efeitos dos fármacos , Digitaria/crescimento & desenvolvimento , Herbicidas/metabolismo , Filogenia , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/crescimento & desenvolvimento , Espectrometria de Massas por Ionização por Electrospray , Streptomyces/classificação , Streptomyces/genética
5.
PLoS One ; 14(9): e0222933, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31545849

RESUMO

Bioactive herbicidal compounds produced by soil microorganisms might be used to creating a bioherbicide for biological weed control. A total of 1,300 bacterial strains were isolated and screened for herbicidal activity against grass and broadleaf weeds. Among primarily selected 102 strains, the herbicidal activity of bacterial fermentation broths from the following three isolates strain-101, strain-128, and strain-329 reduced the growth of D. sanguinalis by 66.7%, 78.3%, and 100%, respectively as compared with control. Phylogenetic analysis of 16S rRNA gene sequencing determined that the strain-329 has 99% similarity to Streptomyces anulatus (HBUM 174206). The potential bioherbicidal efficacy of Streptomyces strain-329 was tested on grass and broadleaf weeds for phytotoxic activity through pre- and post-emergence applications. At pre-emergence application, the phytotoxic efficacy to D. sanguinalis and S. bicolor on seed germination were 90.4% and 81.3%, respectively at the 2x concentration, whereas in the case of Solanum nigrum, 85.2% phytotoxic efficacy was observed at the 4x concentration. The efficacy of Streptomyces strain-329 was substantially higher at post-emergence application, presenting 100% control of grass and broadleaf weeds at the 1x concentration. Two herbicidal compounds coded as 329-C1 and 329-C3 were extracted and purified by column chromatography and high-performance liquid chromatography methods. The active compound 329-C3 slightly increased leaf electrolytic leakage and MDA production as concentration-dependent manner. These results suggest that new Streptomyces sp. strain-329 produced bioherbicidal metabolites and may provide a new lead molecule for production an efficient bioherbicide to regulate grass and broadleaf weeds.


Assuntos
Fermentação , Herbicidas/metabolismo , Plantas Daninhas/crescimento & desenvolvimento , Poaceae/genética , Streptomyces/química , Cromatografia Líquida de Alta Pressão , Herbicidas/isolamento & purificação , Herbicidas/farmacologia , Filogenia , Plantas Daninhas/classificação , Plantas Daninhas/efeitos dos fármacos , Poaceae/classificação , Poaceae/efeitos dos fármacos , RNA Ribossômico 16S/genética , Especificidade da Espécie , Streptomyces/classificação , Streptomyces/genética , Controle de Plantas Daninhas/métodos
6.
Artigo em Inglês | MEDLINE | ID: mdl-31438592

RESUMO

Expected climatic changes likely elicit serious challenges for crop production. Therefore, it is indispensable to investigate the response of crop growth parameters and yield under temperature variability environments. The current experiment on chilli pepper growth was conducted in a field, rain-shelter plastic house, and plastic greenhouse, with accumulated temperatures of 2832 °C, 2967 °C, and 3105 °C in 2017; and 2944 °C, 3091 °C, and 3168 °C in 2018 growing seasons. Based on soil analysis, 132.7 kg ha-1 (1× of livestock manure compost as an optimum and 265.4 kg ha-1 (2×) as a double amount of organic matter were applied to each simulated temperature condition. The results showed that organic manure application favorably affects the growth attributes and nutrient uptake of chilli pepper with the highest values found in the plastic greenhouse, followed by the rain-shelter house, over the open field cultivation condition. The highest growth of chilli pepper was at the 2× rate of organic manure application, whereas the highest yield was found at the 1× rate of organic manure application. The application of organic manure at the 1× rate in the greenhouse increased root, shoot, and fruit dry weights of chilli pepper by 21.4%, 52.4%, and 79.7%, respectively, compared to the control values. These results indicate that the rational use of organic amendments might be the best solution for chilli pepper production under variable climate conditions.


Assuntos
Capsicum/crescimento & desenvolvimento , Fertilizantes , Esterco , Frutas/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Estações do Ano , Solo/química , Temperatura
7.
Ecol Evol ; 5(17): 3756-68, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26380703

RESUMO

Aboveground plant performance is strongly influenced by belowground microorganisms, some of which are pathogenic and have negative effects, while others, such as nitrogen-fixing bacteria and arbuscular mycorrhizal fungi, usually have positive effects. Recent research revealed that belowground interactions between plants and functionally distinct groups of microorganisms cascade up to aboveground plant associates such as herbivores and their natural enemies. However, while functionally distinct belowground microorganisms commonly co-occur in the rhizosphere, their combined effects, and relative contributions, respectively, on performance of aboveground plant-associated organisms are virtually unexplored. Here, we scrutinized and disentangled the effects of free-living nitrogen-fixing (diazotrophic) bacteria Azotobacter chroococcum (DB) and arbuscular mycorrhizal fungi Glomus mosseae (AMF) on host plant choice and reproduction of the herbivorous two-spotted spider mite Tetranychus urticae on common bean plants Phaseolus vulgaris. Additionally, we assessed plant growth, and AMF and DB occurrence and density as affected by each other. Both AMF alone and DB alone increased spider mite reproduction to similar levels, as compared to the control, and exerted additive effects under co-occurrence. These effects were similarly apparent in host plant choice, that is, the mites preferred leaves from plants with both AMF and DB to plants with AMF or DB to plants grown without AMF and DB. DB, which also act as AMF helper bacteria, enhanced root colonization by AMF, whereas AMF did not affect DB abundance. AMF but not DB increased growth of reproductive plant tissue and seed production, respectively. Both AMF and DB increased the biomass of vegetative aboveground plant tissue. Our study breaks new ground in multitrophic belowground-aboveground research by providing first insights into the fitness implications of plant-mediated interactions between interrelated belowground fungi-bacteria and aboveground herbivores.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA