Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Cell Mol Med ; 28(7): e18197, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38506091

RESUMO

Colorectal cancer (CRC) is recognized as one of the most common gastrointestinal malignancies across the globe. Despite significant progress in designing novel treatments for CRC, there is a pressing need for more effective therapeutic approaches. Unfortunately, many patients undergoing chemotherapy develop drug resistance, posing a significant challenge for cancer treatment. Non-coding RNAs (ncRNAs) have been found to play crucial roles in CRC development and its response to chemotherapy. However, there are still gaps in our understanding of interactions among various ncRNAs, such as long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) and microRNAs (miRNAs). These ncRNAs can act as either oncogenes or tumour suppressors, affecting numerous biological functions in different cancers including CRC. A class of ncRNA molecules known as competitive endogenous RNAs (ceRNAs) has emerged as a key player in various cellular processes. These molecules form networks through lncRNA/miRNA/mRNA and circRNA/miRNA/mRNA interactions. In CRC, dysregulation of ceRNA networks has been observed across various cellular processes, including proliferation, apoptosis and angiogenesis. These dysregulations are believed to play a significant role in the progression of CRC and, in certain instances, may contribute to the development of chemoresistance. Enriching our knowledge of these dysregulations holds promise for advancing the field of diagnostic and therapeutic modalities for CRC. In this review, we discuss lncRNA- and circRNA-associated ceRNA networks implicated in the emergence and advancement of drug resistance in colorectal carcinogenesis.


Assuntos
Neoplasias Colorretais , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Circular/genética , RNA Circular/uso terapêutico , RNA Endógeno Competitivo , Resistencia a Medicamentos Antineoplásicos/genética , MicroRNAs/genética , MicroRNAs/uso terapêutico , RNA não Traduzido/genética , RNA Mensageiro/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia
2.
Biochem Pharmacol ; 219: 115913, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37995981

RESUMO

The role of cancer stem cells in metastasis, recurrence, and resistance to conventional therapies is significant. Addressing these cells could potentially decrease cancer reoccurrences and mortality rates. TET1, a crucial gene involved in stem cell self-renewal and potency, may also play a part in cancer stem cells, which warrants further research. To explore the role of TET1 in cancer stem cells, we conducted experiments involving loss and gain. We then analyzed factors such as migration, invasion, cell cycle, cell viability, mammosphere formation, and the CD44+/CD24- subpopulation of cancer cells. We also investigate the influence of TET1 on CCNB1, CDK1, and OCT4. Our study reveals that TET1 can regulate the phenotype of cancer stem cells via OCT4. Additionally, it can control the cell cycle by increasing CDK1 and CCNB1 levels. These findings suggest that targeting DNA methylation and TET1 could be an effective strategy to overcome obstacles posed by Cancer stem cells. Our research also indicates that TET1 can influence the phenotype of cancer stem cells and the cell cycle of breast cancer cells potentially through OCT4, CCNB1, and CDK1. This highlights the importance of TET1 in breast cancer cases and suggests a potential therapeutic approach through DNA methylation and modulation of TET1.


Assuntos
Oxigenases de Função Mista , Proteínas Proto-Oncogênicas , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Ciclo Celular , Linhagem Celular Tumoral , Desmetilação do DNA , Metilação de DNA , Oxigenases de Função Mista/genética , Células-Tronco Neoplásicas/patologia , Proteínas Proto-Oncogênicas/genética , Neoplasias de Mama Triplo Negativas/genética
3.
Stem Cell Res ; 63: 102857, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35872523

RESUMO

Totipotent stem cells are cells with the capacity to form an entire embryo. Many attempts have been made to convert other types of cells to totipotent stem cells which we called induced totipotent stem cells. Various aspects of these cells such as transcriptional and epigenetics networks are unique. By taking advantage of these aspects, efficient methods have been provided to induce totipotent stem cells. Although this advancement is significant, many aspects of induction such as the underlying mechanism remain to be elucidated. On the other hand, embryonic stem cells usually are the source of induction which raise important questions regarding if these methods are induction or promotion of 2C intrinsic totipotent cells in ESC culture. Here, we review the latest mouse progress in underling mechanism of induction of totipotent stem cells. In addition, we follow up on the progress of Blastoids derived from totipotent stem cells.


Assuntos
Células-Tronco Embrionárias , Células-Tronco Totipotentes , Animais , Diferenciação Celular , Embrião de Mamíferos , Epigênese Genética , Camundongos
4.
J Cell Mol Med ; 26(2): 287-305, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34907642

RESUMO

Hepatocellular carcinoma (HCC), as the most prevalent liver malignancy, is annually diagnosed in more than half a million people worldwide. HCC is strongly associated with hepatitis B and C viral infections as well as alcohol abuse. Obesity and nonalcoholic fatty liver disease (NAFLD) also significantly enhance the risk of liver cancer. Despite recent improvements in therapeutic approaches, patients diagnosed in advanced stages show poor prognosis. Accumulating evidence provides support for the regulatory role of non-coding RNAs (ncRNAs) in cancer. There are a variety of reports indicating the regulatory role of microRNAs (miRNAs) in different stages of HCC. Long non-coding RNAs (LncRNAs) exert their effects by sponging miRNAs and controlling the expression of miRNA-targeted genes. Circular RNAs (circRNAs) perform their biological functions by acting as transcriptional regulators, miRNA sponges and protein templates. Diverse studies have illustrated that dysregulation of competing endogenous RNA networks (ceRNETs) is remarkably correlated with HCC-causing diseases such as chronic viral infections, nonalcoholic steatohepatitis and liver fibrosis/cirrhosis. The aim of the current article was to provide an overview of the role and molecular mechanisms underlying the function of ceRNETs that modulate the characteristics of HCC such as uncontrolled cell proliferation, resistance to cell death, metabolic reprogramming, immune escape, angiogenesis and metastasis. The current knowledge highlights the potential of these regulatory RNA molecules as novel diagnostic biomarkers and therapeutic targets in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Circular , RNA Longo não Codificante , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA