Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(30): 20709-20716, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39042105

RESUMO

Form III of linezolid was prepared by heating the commercial form above 150 °C and subsequently analyzed upon cooling down to -160 °C, by low- and high-frequency Raman spectroscopy, differential scanning calorimetry and powder X-ray diffraction (PXRD). It was observed that form III was preserved down to 0 °C. At lower temperatures a soft mode was clearly detected by low-frequency Raman spectroscopy associated with the detection of additional Raman bands distinctive of additional intermolecular H-bond interactions. Raman spectroscopy investigations performed in a wide frequency range revealed a continuous transformation characterized by both displacive and order-disorder signatures. By contrast, PXRD highlighted the absence of symmetry breaking, Bragg peaks being still indexed in the same unit cell from room temperature down to -160 °C. Additionally, a significant broadening of Bragg peaks was observed with decreasing temperature interpreted as being a consequence of a distribution of frozen molecular conformations.

2.
Chemphyschem ; 24(7): e202200884, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36507917

RESUMO

In this work, we present results for loading of well-defined binary systems (cocrystal, solid solution) and untreated materials (physical mixtures) into the voids of MCM-41 mesoporous silica particles employing three different filling methods. The applied techniques belong to the group of "wet methods" (diffusion supported loading - DiSupLo) and "solvent-free methods" (mechanical ball-mill loading - MeLo, thermal solvent free - TSF). As probes for testing the guest1-guest2 interactions inside the MCM-41 pores we employed the benzoic acid (BA), perfluorobenzoic acid (PFBA), and 4-fluorobenzoic acid (4-FBA). The guests intermolecular contacts and phase changes were monitored employing magic angle spinning (MAS) NMR Spectroscopy techniques and powder X-ray diffraction (PXRD). Since mesoporous silica materials are commonly used in drug delivery system research, special attention has been paid to factors affecting guest release kinetics. It has been proven that not only the content and composition of binary systems, but also the loading technique have a strong impact on the rate of guests release. Innovative methods of visualizing differences in release kinetics are presented.

3.
Solid State Nucl Magn Reson ; 121: 101813, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35964358

RESUMO

Many solids crystallize as microcrystalline powders, thus precluding the application of single crystal X-Ray diffraction in structural elucidation. In such cases, a joint use of high-resolution solid-state NMR and crystal structure prediction (CSP) calculations can be successful. However, for molecules showing significant conformational freedom, the CSP-NMR protocol can meet serious obstacles, including ambiguities in NMR signal assignment and too wide conformational search space to be covered by computational methods in reasonable time. Here, we demonstrate a possible way of avoiding these obstacles and making as much use of the two methods as possible in difficult circumstances. In a simple case, our experiments led to crystal structure elucidation of a cocrystal of linezolid (LIN), a wide-range antibiotic, with 2,3-dihydroxybenzoic acid, while a significantly more challenging case of a cocrystal of LIN with 2,4-dihydroxybenzoic acid led to the identification of the most probable conformations of LIN inside the crystal. Having four rotatable bonds, some of which can assume many discreet values, LIN molecule poses a challenge in establishing its conformation in a solid phase. In our work, a set of 27 conformations were used in CSP calculations to yield model crystal structures to be examined against experimental solid-state NMR data, leading to a reliable identification of the most probable molecular arrangements.


Assuntos
Linezolida , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Conformação Molecular
4.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 5): 892-912, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33017322

RESUMO

In a search for new crystalline forms of linezolid with modified thermal properties five cocrystals of this wide range antibiotic with aromatic acids were obtained via mechanochemical grinding and analyzed with single crystal X-ray diffraction, solid-state NMR spectroscopy, powder X-ray diffraction and DSC measurements. The coformers used in this study were benzoic acid, p-hydroxybenzoic acid, protocatechuic acid, γ-resorcylic acid and gallic acid. In each of the cocrystals distinct structural features have been found, including a variable amount of water and different heterosynthons, indicating that there is more than one type of intermolecular interaction preferred by the linezolid molecule. Basing on the frequency of the observed supramolecular synthons, the proposed hierarchy of the hydrogen-bond acceptor sites of linezolid (LIN) is C=Oamide > C=Ooxazolidone > C-O-Cmorpholine > C-N-Cmorpholine > C-O-Coxazolidone. In addition, aromatic-aromatic interactions were found to be important in the stabilization of the analyzed structures. The obtained cocrystals show modified thermal properties, with four of them having melting points lower than the temperature of the phase transition from linezolid form II to linezolid form III. Such a change in this physicochemical property allows for the future application of melting-based techniques of introducing linezolid into drug delivery systems. In addition a change in water solubility of linezolid upon cocrystalization was evaluated, but only in the case of the cocrystal with protocatechuic acid was there a significant (43%) improvement in solubility in comparison with linezolid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA